Complex geometry and Homotopy type theory

Institute for Mathematics, Heidelberg University

Research interests

  • Higgs bundles.
  • Character varieties.
  • Gauge theory.
  • Moduli spaces.
  • Orbifolds and stacks.
  • Fuchsian groups.
  • Topology of real algebraic varieties.
  • Homotopy type theory.
  • Formal mathematics.
  • Computer-assisted proof.

Team

  • Prof. Florent Schaffhauser (Principal investigator).
  • Dr. Kevin Klinge (Scientific collaborator)

Former members

Project collaborators

  • Johannes Rau (Universidad de Los Andes).
  • Manuel Aragón (Universität Bonn).
  • Emanuel Roth (University of Edinburgh).
  • Juan Sebastián Numpaque-Roa (Universidade do Porto).
  • Luca Dal Molin (Università di Trento).

Funding

  • Excellence grant: Mobility in International Research Collaboration, 2024-2026. Project ID: ExU 11.2.1.45. Role: PI.
  • AEI-DFG joint Spanish-German research project, 2025-2028. Very-stability, Hecke transforms and representation varieties in the presence of symmetry (V-SHARP). Project ID: SCHA 2147_1-1 AOBJ 706923. Role: PI.

Seminars and Workshops

Activities

Publications

  1. Daniele Alessandrini, Gye-Seon Lee and Florent Schaffhauser. Hitchin components for orbifolds. J. Eur. Math. Soc. 25 (2023), no. 4, pp. 1285–1347.
  2. Erwan Brugallé and Florent Schaffhauser. Maximality of moduli spaces of vector bundles on curves. Épijournal de Géométrie Algébrique (EPIGA), Volume 6 (2023).
  3. Juan Martín Pérez and Florent Schaffhauser. Orbifolds and the modular curve. In Ohshika, K., Papadopoulos, A. (eds) In the Tradition of Thurston III, pp 365–421, Springer (First online: 19 March 2024).
  4. Tommaso Scognamiglio. Cohomology of non-generic character stacks. Journal de l’École polytechnique — Mathématiques, Volume 11 (2024), pp. 1287-1371
  5. Florent Schaffhauser, Vincent Voß and Katrin Weiß. Algebra, Logik, und Beweisvisualisierung. Mitteilungen der Deutschen Mathematiker-Vereinigung, vol. 33, no. 3, 2025, pp. 205-209.
  6. Numpaque-Roa JS, Schaffhauser F. Flat Torsors in Complex Geometry. In: del Ángel R. PL, Neumann F, Schmitt AHW, eds. Moduli, Motives and Bundles: New Trends in Algebraic Geometry. London Mathematical Society Lecture Note Series. Cambridge University Press (2025), pp. 106-142.

Preprints

  1. Emanuel Roth and Florent Schaffhauser. Harder-Narasimhan filtrations of decorated vector bundles. arXiv:2511.17371.
  2. Florent Schaffhauser and Tommaso Scognamiglio. Real Bialynicki-Birula flows in moduli spaces of Higgs bundles. arXiv:2507.18613.

Job openings

Post-Doctoral position

This position has now been filled.