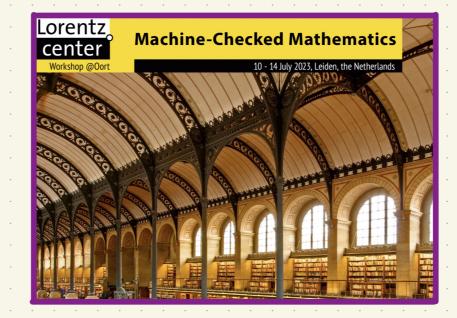
Formally real fields



Riccardo Brasca :: [Mahoor Alavioun, Maryam Emamjomeh Zadeh, Ignasi Sánchez Rodríguez, Florent Schaffhauser]

10-14 July 2023

Defi	nition
· · · ·	A field F is formally real if -1 is not a sum of squares in F.
· · · ·	$\neg (\exists n : IN, \exists x_1,, x_n : F, -1 = x_1^2 + + x_n^2)$
	mples = \mathbb{R} , $\overline{\mathbb{Q}}$ \cap \mathbb{R} , $\mathbb{Q}(\mathbb{T})$, $\mathbb{R}(t)$, real Puiseux series,
The	eorem (Artin- Schreier theory)
	If F is formally real, then there exists a linear ordering on F.

Definiti		· ·	· ·	· ·
	ring R is formally real if:	· ·	· ·	· ·
· · · · · · ·	$\forall n : N, \forall x_1, \dots, x_n : R,$	· ·	· ·	· ·
· · · · · · ·	$x_{n}^{2} + x_{n}^{2} = 0 \implies \forall i, x_{i} = 0.$	· ·	· ·	· ·
Exampl		• •	• •	• •
1,	A linearly ordered ring is formally real.	· ·		· ·
· · · · · · · · · · · · · · · · · · ·	If the ring R is a field, the condition of being formally real is equivalent to the previous one.	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·
	A formally real (non-trivial) ring has characteristic zero.	· ·	· ·	· ·

Theorem (Artin-Se	chreier theory)
If F is forma Linear orderi	lly real, then there exists a ng on F.
Proof	sub-seniring PCF such that $4x \in F, x^2 \in P$ and $-7 \notin P$
Consider the inductively c	set of positive cones on F. It is ordered by inclusion.
	rmally real, that set is non- of squares form a positive rn, it admits a maximal element.
A maximal po ordering.	ositive cone induces a linear $a \in b$ if $b - a \in P$

Formal definitions	
1. Being formally real	<pre>def sum_of_squares {R : Type _} [Semiring R] : List R → R [] => 0 (a :: L) => (a ^ 2) + (sum_of_squares L) example : sum_of_squares [1, -2, 3] = 14 := rfl</pre>
<pre>@[mk_iff] class IsFormallyReal (R : Type _) [Semiring R] : Prop where is_formally_real : ∀ L : List R, sum_of_squares L = 0 → (∀ x ∈ I </pre>	<pre>theorem formally_real_semifield_equiv {F : Type _} (Semifield F] : (IsFormallyReal F) + ¬ (∃ L : List F, 1 + sum_of_squares L = 0) := by classical constructor · exact one_add_sum_of_squares_neq_zero · exact sum_of_sq_eq_zero_iff_all_zero · exact sum_of_sq_eq_zero_if</pre>
2. The set of positive cone	done
def squares (A : Type _) [Semiring A] : Set A := {a \exists (b def cone_of_squares (A : Type _) [Semiring A] := AddSubmono def PositiveCones (A : Type _) [Ring A] := { P : Subsemiring A squares A \subseteq P A $-1 \notin$ P }	

```
Implementation of other approaches
                lemma IsFormallyReal iff Fin (R : Type ) [Semiring R] : IsFormallyReal R +
                    \forall (n : N), \forall (f : Fin n \rightarrow R), (\sum i, (f i) \wedge 2 = 0) \rightarrow (\forall i, f i = 0) := by
                  refine' (fun h n f hf i => _, fun h => (fun L => List.ofFnRec (fun n f H a ha => _) L))
                  • refine' h.is_formally_real (List.ofFn f) _ (f i) (by simp [List.mem_ofFn])
                    simp [sum_of_squares, sum_of_squares_of_list, List.sum_ofFn, hf]
                  • rw [sum_of_squares_of_list, List.map_ofFn, List.sum_ofFn] at H
                    obtain (j, rfl) := (List.mem_ofFn _ _).1 ha
                    exact h n f H j
                lemma IsFormallyReal_iff Multiset (R : Type _) [Semiring R] : IsFormallyReal R ↔
                    \forall (M : Multiset R), (M.map (.^2)).sum = \emptyset \rightarrow (\forall x \in M, x = \emptyset) := by
                  refine' (fun h M hM x hx => _, fun h => (fun L hL x hx => _))
                  \cdot refine' h.is formally real M.toList x (Multiset.mem toList.2 hx)
                    convert hM
                    rw [sum_of_squares_of_list]
                    conv rhs => rw [← Multiset.coe toList M]
                    rw [Multiset.coe map, Multiset.coe sum]

• refine' h L _ (by simp [hx])
                    convert hL
                    simp [sum_of_squares_of_list]
```

In Mathlib	
1. The notion of positive cone is formalize differently	ed.
<pre>add_nonneg : ∀ {a b}, nonneg a → nonneg b → nonneg (a + b) nonneg_antisymm : ∀ {a}, nonneg a → nonneg (-a) → a = 0 structure PositiveCone (a : Type _) [Ring a] extends AddCommGroup.PositiveCone a where / In a positive cone, `1` is `nonneg` -/ one_nonneg : nonneg 1 / In a positive cone, if `a` and `b` are `pos` then so is `a * b` -/</pre>	means that -P= 0 , h does not have to happen with our notion
· · · · · · · · · · · · · · · · · · ·	(at least in
<pre>structure TotalPositiveCone (α : Type _) [AddCommGroup α] extends PositiveCone a where / For any `a` the proposition `nonneg a` is decidable -/ nonnegDecidable : DecidablePred nonneg / Either `a` or `-a` is `nonneg` -/ nonneg_total : ♥ a : α, nonneg a v nonneg (-a)</pre>	a ring)

In Mathlib	
2. Positivity of so semirings?	juares in linearly ordered
We prove that linearly ordered rings are	<pre>@[simp] lemma sum_sq_nonneg {A : Type _} [LinearOrderedRing A] (L : List A) : 0 ≤ sum_of_squares L := by induction' L with head tail ih . rfl . apply add_nonneg . exact sq_nonneg head . exact ih</pre>
formally real.	theorem sq_nonneg $\{R : Type u_1\}$ [inst : LinearOrderedRing R] (a : R) : $0 \le a \land 2$
In IN too, the squares	<pre>instance {A : Type _} [LinearOrderedRing A] : IsFormallyReal A where is_formally_real := fun (L : List A) (sum_sq_zero: sum_of_squares L = 0) → by intro a a_in_L by_contra c have a_sq_pos : 0 < a ^ 2 := by exact Iff.mpr (sq_pos_iff a) c have h : a ^ 2 + sum_of_squares (L.erase a) = sum_of_squares L := by</pre>
are positive.	<pre>have h : a ~ 2 + sum_of_squares (L.erase a) = sum_of_squares L := by exact Eq.symm (sum_of_squares_erase L a a_in_L) rw [sum_sq_zero] at h have sum_sq_nonneg : 0 ≤ sum_of_squares (L.erase a) := by simp have sum_sq_pos: 0 < a ^ 2 + sum_of_squares (L.erase a) := by exact add_pos_of_pos_of_nonneg a_sq_pos sum_sq_nonneg have : a ^ 2 + sum_of_squares (L.erase a) ≠ 0 := by exact ne_of_gt sum_sq_pos contradiction</pre>

The final definition

	rmallyReal.lean >	▼FormallyReal.lean:599:0 -> ひ
5777 578 579 580 581 582 583 584 585 586 586 586 587 588 589 590	<pre>instance LinearOrderedRing.isFormallyReal (A : Type _) [LinearOrderedRing A] : IsFormallyReal A where is_formally_real := fun (L : List A) (sum_sq_zero: sum_of_squares L = 0) → by intro a a_in_L by_contra c have a_sq_pos : 0 < a ^ 2 := by exact Iff.mpr (sq_pos_iff a) c have h : a ^ 2 + sum_of_squares (L.erase a) = sum_of_squares L := by exact Eq.symm (sum_of_squares_erase L a a_in_L) rw [sum_sq_zero] at h have sum_sq_nonneg : 0 ≤ sum_of_squares (L.erase a) := by simp have sum_sq_pos: 0 < a ^ 2 + sum_of_squares (L.erase a) := by exact add_pos_of_pos_of_nonneg a_sq_pos sum_sq_nonneg have : a ^ 2 + sum_of_squares (L.erase a) ≠ 0 := by exact ne_of_gt sum_sq_pos contradiction</pre>	 ✓ Messages (1) ✓ FormallyReal.lean:599:0 ⁽¹⁾ (() ✓ IsFormallyReal.toLinearOrderedRin depends on axioms: [propext, Classical.choice, Quot.sound] ► All Messages (11) []
591 592 593 594 595 596 597 598 599 600	<pre>noncomputable def IsFormallyReal.toLinearOrderedRing {F : Type _} [Field F] [IsFormallyReal F] : LinearOrderedRing F := LinearOrderedRing.mkOfPositiveCone (IsFormallyReal.toTotalPositiveCone F) #print axioms LinearOrderedRing.isFormallyReal 'LinearOrderedRing.isFormallyReal' depends on axioms: [C #print axioms IsFormallyReal.toLinearOrderedRing 'IsFormallyReal.toLinearOrderedRing' depends on axioms </pre>	
592 593 594 595 596 597 598 599	<pre>noncomputable def IsFormallyReal.toLinearOrderedRing {F : Type _} [Field F] [IsFormallyReal F] : LinearOrderedRing F := LinearOrderedRing.mkOfPositiveCone (IsFormallyReal.toTotalPositiveCone F) #print axioms LinearOrderedRing.isFormallyReal 'LinearOrderedRing.isFormallyReal' depends on axioms: [C]</pre>	
592 593 594 595 596 597 598 599	<pre>noncomputable def IsFormallyReal.toLinearOrderedRing {F : Type _} [Field F] [IsFormallyReal F] : LinearOrderedRing F := LinearOrderedRing.mkOfPositiveCone (IsFormallyReal.toTotalPositiveCone F) #print axioms LinearOrderedRing.isFormallyReal 'LinearOrderedRing.isFormallyReal' depends on axioms: [C]</pre>	· · · · · · · · · · · ·
592 593 594 595 596 597 598 599	<pre>noncomputable def IsFormallyReal.toLinearOrderedRing {F : Type _} [Field F] [IsFormallyReal F] : LinearOrderedRing F := LinearOrderedRing.mkOfPositiveCone (IsFormallyReal.toTotalPositiveCone F) #print axioms LinearOrderedRing.isFormallyReal 'LinearOrderedRing.isFormallyReal' depends on axioms: [C]</pre>	