MONODROMY OF KNIZHNIK-ZAMOLODCHIKOV EQUATIONS

Abstract

In this poster, we recall, following [1], two constructions of (families of)
representations of Artin’s braid group Bp:

pEZ : B — Aut@[[hﬂ(W[[h]])

and
pﬁh : Bn — Aut@[[hﬂ (W[[h]])

The representation pﬁz is obtained analytically: it is the mon-
odromy representation of a certain flat connection called the Knizhnik-

Zamolodchikov connection. The representation pTth is itself obtained
algebraically: it is the braid group representation associated to the uni-
versal R-matrix of the quantum enveloping algebra Uy, (g). Both these
representations will be constructed starting from a complex semisimple
Lie algebra g and objects attached to g. The purpose of this poster
is to give some of the tools needed to understand the statement of the
following theorem:

Theorem 1 (The Kohno-Drinfeld theorem) Let g be a com-
plex semisimple Lie algebra and let V be a g-module. The mon-
odromy representation of a certain system of differential equations
with values in VO™, called the Knizhnik-Zamolodchikov equations,
18 equivalent to the braid group representation associated to the
universal R-matriz of the quantum enveloping algebra Uy, (g).

Monodromy representations

Starting from a vector bundle E — X over a manifold X endowed with
a flat connection V, the associated monodromy representation is a
representation of the fundamental group 7t (X) of the base space in the
automorphism group of the fibre of the bundle. In other words, there
1S a map

{flat connections on (E — X)} — {morphisms 711 (X, x) — Aut(Ey)}

whose definition we now recall.
A connection V on a vector bundle (E — X) can be seen as a way of
deriving sections, that is, as a map:

V:0Q'X.E)=T(E) — QYX.E) =T(T*X® E)

(satisfying V(f.o) = df ® 0+ .V o) or, equivalently, as parallel trans-
port along paths in X:

(vy: 0,11 — X) — (Ty : Ey o) — 1)

(linear isomorphism between the fiber at the origin of y and the fiber
at the end of y).

Lemma 2 One has: Ty =Ty o Ty for composition of compatible
paths (in particular for loops at the same base point).

By definition, the holonomy group at x € X is the subgroup of
Aut(Eyx) generated by the Ty for v a loop based at x. One says
that one is in the presence of monodromy when the condition (y
homotopic to y') implies (T, = Tys). Observing that a connection
V: QYX E) = QYX, E) uniquely extends to a covariant derivative

Q%X.E) % ONX.E) % QXX E) -

satisfying V(w A w’) = (dw) A w’ + (—D)%lw A V', one may
state a necessary and sufficient condition for monodromy to hold:

Definition 3 (Curvature of a connection) The map
KV :=VoV:Q%X E) = Q%X E)

1s called the curvature of the connection V. The connection V 1s
said to be flat if KV =0.

Proposition 4
((v homotopic to Y) = (Ty = TY’)) iff (KV =0).

Therefore, in the presence of a flat connection, the following map is
well-defined and it is a group morphism by lemma 2:

o:m (X, x) — Aut(Ey)
vl — Ty.

This representation of 711(X, x) is called the monodromy representa-
tion associated to the flat connection V on (E — X). We have seen
that such a representation arises when holonomy depends only on ho-
motopy.
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The KZ system

1. Monodromy representations of Artin’s braid group. In
order to construct, as in the above section, a monodromy representation
of Artin’s braid group

() Bn =<0y, ..,0n-1 | 0y0; = ojoy if [i —j| > 2
and 004410y = 04410{044] >

the first step is to find a manifold Xy, satisfying 711 (Xy,) = Bn. Here,
Xn will be the configuration space of n pairwise distinct points in the
complex plane, up to permutation:

Xn = Yn/Gn where Yn ={(z1, ....zn) € CM [1#£ ] = z; # Zj}.

Then, we need to construct a vector bundle on Xy, and a flat connection
on this bundle. We start with a vector space W and consider the trivial

bundle ((Yn x W) — Yn). The Knizhnik-Zamolodchikov system is the

following system of differential equations:

dz; — dz;
(KZ): dw= ) L

I<in

Az W
Zi — Z)' Y 7

where w : Yn — Wis a function and the Ay are endomorphisms of W.
Here, the bundle is trivial, so the connection whose horizontal sections
(Vo = 0) correspond to solutions of the KZ system is:

dZi — de

VKL — d—T, where I' = Z
1<

Zi — Zj i
Proposition 5 The following conditions are sufficient for the KZ
connection V*% to be flat:

( :Aija Al = 0 for all pairwise distinct 1,j, k, 1

(x) 4 A5, A + Ajidd =0,
-Ajka Aij + Aik] = 0.

\

From now on, we assume that the connection \VAART flat, that is,
that conditions (%) are satisfied by the endormorphisms A4 of W.
Then, by the considerations of the first section of this poster, we have
a monodromy representation 7y (Yn) — Aut(W). The fundamental
aroup 71 (Yq) is the pure braid group Pn, satisfying Bn = Pn/Gn.
Recall likewise that Xy = Yn/Gn. If we assume additionally that
Gn acts on W, then one can consider the (non-trivial) vector bundle

(En:i= (Yn X W) /6n — Xp), with fibre W above X;,. Here &4, acts
on Yn X Wiin such a way that (z1, ..., zn, 0.w) = (25(1), -1 Zg(n): W)

in Ey,. Then, if the connection V* on ((Yn x W) = Yy,) is invariant
under the action of &y, (permutation of indices i — (1)), it induces a
connection VXZ on (Eqy — Xp). Since the two bundles have the same
fibre W, relations (x*) are automatically satisfied and this induced
connection is flat. Hence a monodromy representation

oX% B = 1 (Xn) — Aut(W).

2. Construction of a KZ system. For the above construction to
make sense, one needs to specify a vector space W and endomorhisms
Ay of W satistying relations (xx), as well as an action of & on W

)

leaving the connection VK< invariant. To construct such a system, the
initial data will be:

e o complex semisimple Lie algebra g.

e a symmetric g-invariant 2-tensor t = ) Xy ® Yr € g ® g (such an
element can always be constructed from the Casimir element C &€

Z(U(g)) of U(g), see [1]).

e o complex parameter h € C.
e an integer n > 2.
e a finite-dimensional g-module V.

First, set W = VO™ W is a g-module and &y, acts on W by permu-
tation of coordinates. Second, define:

=Y - eal™ e )
T

where

(1) () (k)

& =Xr, & =1VYrand oy = 11if k #1,j.

Lemma 6 Since V is a g-module (or equivalently a U(g)-module),
the ty; € (U(g))®™ induce endomorphisms of W = VO™, These
endormorphisms satisfy relations (xx*).

The proot of this lemma follows from the construction of the t;; and
the g-invariance of t € g ® g.

Lemma 7 For all 1,j, one has ty; = i

The proof of this lemma follows from the symmetry of the 2-tensor
t € g®g. We can then set Ay = %[tij c End(V®M) and the KZ
system becomes:

(KZ'): dw = h >

By lemmas 6 and 7, the associated KZ connection is flat and Gn-
invariant. Therefore, by the considerations of subsection 1, one has a
monodromy representation

082 B = m (Xn) — Aut(VEM).

Observe that the KZ system (KZ') depends linearly on the parameter
h, and therefore its solutions depend analytically on h. This depen-
dance may be expressed by a group morphism:

p}iz : Bn = 7T1(Xn) — AutC[[h]](V®n[[h]]) (1)

Thus, we have a family of monodromy representations of the braid
oroup Bn and the objective of the next section is to describe this mon-
odromy in the best possible way.

The quantum group Uy (g)

We now proceed with a more algebraic construction of braid group
representations.

1. Braid group representations from R-matrices. Recall the
presentation (*) of the braid group By. To construct representations
of Bn, one may use Artin’s theorem:

Lemma 8 (Universal property of the braid group) Given a
group G and elements cy, ...,cn € G satisfying ci¢j = cj¢q if i —
jl = 2 and cicir1Ci = Cir1CiCir], there exists a unique group
morphism Bn — G sending o to c;.

Let now W be a vector space and ¢ be a linear automorphism of W@W.
Set ¢ = Idyyei-1®@c®@Idyysm-i-1) for 1 <1< n—1and observe that
by construction ¢i¢j = ¢jcq if [1 —j| = 2 (note that ¢; € Aut(Wem)).
Then:

Proposition 9 One has ciciiici = ¢ir1Cicis ff ¢ € Aut(W ®
W) satisfies the Yang-Baxter equation, that s, iff one has, in
Aut(W @ W ® W), the equality:

(c ® Idw) (Idw ® ¢)(c ® Idy/) = (Idw ® ¢)(c ® Idw) (Idyw ® ¢).

Corollary 10 Ifc € Aut(W®W) s a solution of the Yang-Baxter
equation (such a solution is called an R-matriz), then there ex-
ists a unique group morphism pS : Bn — Aut(W®™) such that
o5 (07) = ¢ for all .

Hence, starting from a solution of the Yang-baxter equation, one may
construct a representation of Artin’s braid group By,. To produce solu-
tions of the Yang-Baxter equation, one may use the theory of braided
bialgebras.

2. Topological braided bialgebras. A topological braided bialge-
bra is a topological bialgebra H endowed with an element R € H®H,
invertible in the algebra H®@H, which makes the coproduct A of H
quasi-cocommutative and which satisfies (A®Idy)(R) = Ry3R93 and
(Idy®A)(R) = Ry3Ry» in HOH®H. Such an element R € H®H is
called a universal R-matrix because it produces solutions to the Yang-
Baxter equation on every H-module W:

Proposition 11 If (H,R) is a topological braided bialgebra then,
given an H-module W, there exists a solution of the Yang-Baxter

equation C\BV on W and therefore, by corollary 10, a braid group

representation pﬁ : B — Aut(W®n). Ezxplicitly, C5V(W1®w2) —
Tw w(RWi®Ws), where Ty yw(wi@ws) = woRwy.

3. Quantum enveloping algebras. We now need examples of
topological braided bialgebras. Consider the Drinfeld-Jimbo deforma-

tion Up(g) of the enveloping algebra U(g) of a semisimple Lie algebra
g (as a vector space, one has Uy (g) >~ U(g)[[h]]):

Theorem 12 The vector space U(g)l[hl] is a topological bialgebra
and possesses a universal R-matrix denoted Ry, with respect to
whach it 1s a braided quasi-cocommutative topological bialgebra.

Then, if V is a g-module (or equivalently a U(g)-module), V[[h]] is a
Uy, (g)-module and if one sets W = V[[h]], one has:

AN

WE™ = (V[ *™ o (VE™)[[h]].

The braid group representation associated to the universal R-matrix
Ry, of Uy, (g) by proposition 11 is therefore a group morphism

pﬁh . Bn — Aut(c[[hﬂ(v@n[[h”) (2)

We can now state the Kohno-Drinfeld theorem, which asserts the equiv-
alence between the two representations (1) and (2) whose constructions
we recalled:

Theorem 13 (The Kohno-Drinfeld theorem) There exists a
C[[h]]-automorphism w of VEM[h]] such that, for all b € Bp,

oKZ(b) = upih(b)u?.
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