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Abstract

In this poster, we recall, following [1], two constructions of (families of)
representations of Artin’s braid group Bn:

ρKZn : Bn −→ AutC[[h]](W[[h]])

and
ρRh
n : Bn −→ AutC[[h]](W[[h]]).

The representation ρKZn is obtained analytically: it is the mon-
odromy representation of a certain flat connection called the Knizhnik-

Zamolodchikov connection. The representation ρRh
n is itself obtained

algebraically: it is the braid group representation associated to the uni-
versal R-matrix of the quantum enveloping algebra Uh(g). Both these
representations will be constructed starting from a complex semisimple
Lie algebra g and objects attached to g. The purpose of this poster
is to give some of the tools needed to understand the statement of the
following theorem:

Theorem 1 (The Kohno-Drinfeld theorem) Let g be a com-
plex semisimple Lie algebra and let V be a g-module. The mon-
odromy representation of a certain system of differential equations
with values in V⊗n, called the Knizhnik-Zamolodchikov equations,
is equivalent to the braid group representation associated to the
universal R-matrix of the quantum enveloping algebra Uh(g).

Monodromy representations

Starting from a vector bundle E → X over a manifold X endowed with
a flat connection ∇, the associated monodromy representation is a
representation of the fundamental group π1(X) of the base space in the
automorphism group of the fibre of the bundle. In other words, there
is a map

{flat connections on (E → X)} −→ {morphisms π1(X, x) → Aut(Ex)}

whose definition we now recall.
A connection ∇ on a vector bundle (E → X) can be seen as a way of
deriving sections, that is, as a map:

∇ : Ω0(X,E) = Γ(E) −→ Ω1(X,E) = Γ(T∗X⊗ E)

(satisfying∇(f.σ) = df⊗σ+ f.∇σ) or, equivalently, as parallel trans-
port along paths in X:

(γ : [0, 1] −→ X) 7−→ (Tγ : Eγ(0)
≃−→ Eγ(1))

(linear isomorphism between the fiber at the origin of γ and the fiber
at the end of γ).

Lemma 2One has: Tγγ ′ = Tγ ◦ Tγ ′ for composition of compatible
paths (in particular for loops at the same base point).

By definition, the holonomy group at x ∈ X is the subgroup of
Aut(Ex) generated by the Tγ for γ a loop based at x. One says
that one is in the presence of monodromy when the condition (γ
homotopic to γ ′) implies (Tγ = Tγ ′). Observing that a connection

∇ : Ω0(X,E) → Ω1(X,E) uniquely extends to a covariant derivative

Ω0(X,E)
∇−→ Ω1(X,E)

∇−→ Ω2(X,E)
∇−→ . . .

satisfying ∇(ω ∧ ω ′) = (dω) ∧ ω ′ + (−1)|ω|ω ∧ ∇ω ′, one may
state a necessary and sufficient condition for monodromy to hold:

Definition 3 (Curvature of a connection)The map

K∇ := ∇ ◦∇ : Ω0(X,E) → Ω2(X,E)

is called the curvature of the connection ∇. The connection ∇ is
said to be flat if K∇ = 0.

Proposition 4

(

(γ homotopic to γ ′) =⇒ (Tγ = Tγ ′)
)

iff
(

K∇ = 0
)

.

Therefore, in the presence of a flat connection, the following map is
well-defined and it is a group morphism by lemma 2:

ρ : π1(X, x) −→ Aut(Ex)

[γ] 7−→ Tγ.

This representation of π1(X, x) is called the monodromy representa-
tion associated to the flat connection ∇ on (E → X). We have seen
that such a representation arises when holonomy depends only on ho-
motopy.

The KZ system

1. Monodromy representations of Artin’s braid group. In
order to construct, as in the above section, a monodromy representation
of Artin’s braid group

(∗) Bn =< σ1, ... ,σn−1 | σiσj = σjσi if |i− j| > 2

and σiσi+1σi = σi+1σiσi+1 >

the first step is to find a manifold Xn satisfying π1(Xn) = Bn. Here,
Xn will be the configuration space of n pairwise distinct points in the
complex plane, up to permutation:

Xn = Yn/Sn where Yn = {(z1, ... , zn) ∈ C
n | i 6= j =⇒ zi 6= zj}.

Then, we need to construct a vector bundle on Xn and a flat connection
on this bundle. We start with a vector spaceW and consider the trivial
bundle ((Yn×W) → Yn). The Knizhnik-Zamolodchikov system is the
following system of differential equations:

(KZ) : dw =
∑

16i<j6n

dzi − dzj

zi − zj
Aij.w,

wherew : Yn → W is a function and theAij are endomorphisms ofW.
Here, the bundle is trivial, so the connection whose horizontal sections
(∇σ = 0) correspond to solutions of the KZ system is:

∇KZ = d− Γ , where Γ =
∑

i<j

dzi − dzj

zi − zj
Aij.

Proposition 5The following conditions are sufficient for the KZ
connection ∇KZ to be flat:

(∗∗)







[Aij,Akl] = 0 for all pairwise distinct i, j, k, l
[Aij,Aik +Ajk] = 0,
[Ajk,Aij +Aik] = 0.

From now on, we assume that the connection ∇KZ is flat, that is,
that conditions (∗∗) are satisfied by the endormorphisms Aij of W.
Then, by the considerations of the first section of this poster, we have
a monodromy representation π1(Yn) → Aut(W). The fundamental
group π1(Yn) is the pure braid group Pn, satisfying Bn = Pn/Sn.
Recall likewise that Xn = Yn/Sn. If we assume additionally that
Sn acts on W, then one can consider the (non-trivial) vector bundle
(En := (Yn×W)/Sn → Xn), with fibre W above Xn. Here Sn acts
on Yn×W in such a way that (z1, ... , zn,σ.w) = (zσ(1), ... , zσ(n),w)

in En. Then, if the connection ∇KZ on ((Yn×W) → Yn) is invariant
under the action of Sn (permutation of indices i 7→ σ(i)), it induces a
connection ∇KZ on (En → Xn). Since the two bundles have the same
fibre W, relations (∗∗) are automatically satisfied and this induced
connection is flat. Hence a monodromy representation

ρKZn : Bn = π1(Xn) −→ Aut(W).

2. Construction of a KZ system. For the above construction to
make sense, one needs to specify a vector space W and endomorhisms
Aij of W satisfying relations (∗∗), as well as an action of Sn on W

leaving the connection ∇KZ invariant. To construct such a system, the
initial data will be:

• a complex semisimple Lie algebra g.

• a symmetric g-invariant 2-tensor t =
∑

r xr ⊗ yr ∈ g⊗ g (such an
element can always be constructed from the Casimir element C ∈
Z(U(g)) of U(g), see [1]).

• a complex parameter h ∈ C.

• an integer n > 2.

• a finite-dimensional g-module V .

First, set W = V⊗n: W is a g-module and Sn acts on W by permu-
tation of coordinates. Second, define:

tij =
∑

r

α
(1)
r ⊗ · · · ⊗ α

(n)
r ∈ (U(g))⊗n

where
α
(i)
r = xr,α

(j)
r = yr and α

(k)
r = 1 if k 6= i, j.

Lemma 6 Since V is a g-module (or equivalently a U(g)-module),
the tij ∈ (U(g))⊗n induce endomorphisms of W = V⊗n. These
endormorphisms satisfy relations (∗∗).
The proof of this lemma follows from the construction of the tij and
the g-invariance of t ∈ g⊗ g.

Lemma 7 For all i, j, one has tij = tji.

The proof of this lemma follows from the symmetry of the 2-tensor
t ∈ g ⊗ g. We can then set Aij =

h
2iπtij ∈ End(V⊗n) and the KZ

system becomes:

(KZ ′) : dw =
h

2
√
−1π

∑

16i<j6n

dzi − dzj

zi − zj
tij.w.

By lemmas 6 and 7, the associated KZ connection is flat and Sn-
invariant. Therefore, by the considerations of subsection 1, one has a
monodromy representation

ρKZn : Bn = π1(Xn) −→ Aut(V⊗n).

Observe that the KZ system (KZ ′) depends linearly on the parameter
h, and therefore its solutions depend analytically on h. This depen-
dance may be expressed by a group morphism:

ρKZn : Bn = π1(Xn) −→ AutC[[h]](V
⊗n[[h]]). (1)

Thus, we have a family of monodromy representations of the braid
group Bn and the objective of the next section is to describe this mon-
odromy in the best possible way.

The quantum group Uh(g)

We now proceed with a more algebraic construction of braid group
representations.
1. Braid group representations from R-matrices. Recall the
presentation (∗) of the braid group Bn. To construct representations
of Bn, one may use Artin’s theorem:

Lemma 8 (Universal property of the braid group)Given a
group G and elements c1, ... , cn ∈ G satisfying cicj = cjci if |i −
j| > 2 and cici+1ci = ci+1cici+1, there exists a unique group
morphism Bn → G sending σi to ci.

Let nowW be a vector space and c be a linear automorphism ofW⊗W.
Set ci = IdW⊗(i−1)⊗c⊗IdW⊗(n−i−1) for 1 6 i 6 n−1 and observe that
by construction cicj = cjci if |i− j| > 2 (note that ci ∈ Aut(W⊗n)).
Then:

Proposition 9One has cici+1ci = ci+1cici+1 iff c ∈ Aut(W ⊗
W) satisfies the Yang-Baxter equation, that is, iff one has, in
Aut(W ⊗W ⊗W), the equality:

(c⊗ IdW)(IdW ⊗ c)(c⊗ IdW) = (IdW ⊗ c)(c⊗ IdW)(IdW ⊗ c).

Corollary 10 If c ∈ Aut(W⊗W) is a solution of the Yang-Baxter
equation (such a solution is called an R-matrix), then there ex-
ists a unique group morphism ρcn : Bn −→ Aut(W⊗n) such that
ρcn(σi) = ci for all i.

Hence, starting from a solution of the Yang-baxter equation, one may
construct a representation of Artin’s braid group Bn. To produce solu-
tions of the Yang-Baxter equation, one may use the theory of braided
bialgebras.
2. Topological braided bialgebras. A topological braided bialge-
bra is a topological bialgebra H endowed with an element R ∈ H⊗̂H,
invertible in the algebra H⊗̂H, which makes the coproduct ∆ of H
quasi-cocommutative and which satisfies (∆⊗̂IdH)(R) = R13R23 and
(IdH⊗̂∆)(R) = R13R12 in H⊗̂H⊗̂H. Such an element R ∈ H⊗̂H is
called a universal R-matrix because it produces solutions to the Yang-
Baxter equation on every H-module W:

Proposition 11 If (H,R) is a topological braided bialgebra then,
given an H-module W, there exists a solution of the Yang-Baxter
equation cRW on W and therefore, by corollary 10, a braid group

representation ρRn : Bn −→ Aut(W⊗̂n). Explicitly, cRW(w1⊗̂w2) =

τW,W(R.w1⊗̂w2), where τW,W(w1⊗̂w2) = w2⊗̂w1.

3. Quantum enveloping algebras. We now need examples of
topological braided bialgebras. Consider the Drinfeld-Jimbo deforma-
tion Uh(g) of the enveloping algebra U(g) of a semisimple Lie algebra
g (as a vector space, one has Uh(g) ≃ U(g)[[h]]):

Theorem 12The vector space U(g)[[h]] is a topological bialgebra
and possesses a universal R-matrix denoted Rh, with respect to
which it is a braided quasi-cocommutative topological bialgebra.

Then, if V is a g-module (or equivalently a U(g)-module), V[[h]] is a
Uh(g)-module and if one sets W = V[[h]], one has:

W⊗̂n =
(

V[[h]]
)⊗̂n ≃

(

V⊗n
)

[[h]].

The braid group representation associated to the universal R-matrix
Rh of Uh(g) by proposition 11 is therefore a group morphism

ρRh
n : Bn −→ AutC[[h]](V

⊗n[[h]]). (2)

We can now state the Kohno-Drinfeld theorem, which asserts the equiv-
alence between the two representations (1) and (2) whose constructions
we recalled:

Theorem 13 (The Kohno-Drinfeld theorem)There exists a
C[[h]]-automorphism u of V⊗n[[h]] such that, for all b ∈ Bn,

ρKZn (b) = uρRh
n (b)u−1.
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