Monodromy Of Knizhnik-Zamolodchikov Equations

FLORENT SCHAFFHAUSER KEIO UNIVERSITY, YOKOHAMA

Abstract

In this poster, we recall, following [1], two constructions of (families of) representations of Artin's braid group B_n :

$$\rho_n^{\mathsf{KZ}}: \mathsf{B}_n \longrightarrow \mathsf{Aut}_{\mathbb{C}[[\mathsf{h}]]}(W[[\mathsf{h}]])$$

and

$$\rho_n^{R_h}: B_n \longrightarrow Aut_{\mathbb{C}[[h]]}(W[[h]]).$$

The representation ρ_n^{KZ} is obtained analytically: it is the monodromy representation of a certain flat connection called the Knizhnik-Zamolodchikov connection. The representation $\rho_n^{R_h}$ is itself obtained algebraically: it is the braid group representation associated to the universal R-matrix of the quantum enveloping algebra $\mathcal{U}_h(\mathfrak{g})$. Both these representations will be constructed starting from a complex semisimple Lie algebra \mathfrak{g} and objects attached to \mathfrak{g} . The purpose of this poster is to give some of the tools needed to understand the statement of the following theorem:

Theorem 1 (The Kohno-Drinfeld theorem) Let $\mathfrak g$ be a complex semisimple Lie algebra and let V be a $\mathfrak g$ -module. The monodromy representation of a certain system of differential equations with values in $V^{\otimes n}$, called the Knizhnik-Zamolodchikov equations, is equivalent to the braid group representation associated to the universal R-matrix of the quantum enveloping algebra $\mathfrak U_h(\mathfrak g)$.

Monodromy representations

Starting from a vector bundle $E \to X$ over a manifold X endowed with a flat connection ∇ , the associated *monodromy representation* is a representation of the fundamental group $\pi_1(X)$ of the base space in the automorphism group of the fibre of the bundle. In other words, there is a map

 $\{\text{flat connections on } (\mathsf{E} \to \mathsf{X})\} \longrightarrow \{\text{morphisms } \pi_1(\mathsf{X}, \mathsf{x}) \to \mathsf{Aut}(\mathsf{E}_\mathsf{x})\}$

whose definition we now recall.

A connection ∇ on a vector bundle $(E \to X)$ can be seen as a way of deriving sections, that is, as a map:

$$\nabla: \Omega^0(\mathsf{X},\mathsf{E}) = \Gamma(\mathsf{E}) \longrightarrow \Omega^1(\mathsf{X},\mathsf{E}) = \Gamma(\mathsf{T}^*\mathsf{X}\otimes\mathsf{E})$$

(satisfying $\nabla(f.\sigma)=df\otimes\sigma+f.\nabla\sigma$) or, equivalently, as parallel transport along paths in X:

$$(\gamma:[0,1]\longrightarrow X)\longmapsto (\mathsf{T}_{\gamma}:\mathsf{E}_{\gamma(0)}\stackrel{\simeq}{\longrightarrow}\mathsf{E}_{\gamma(1)})$$

(linear isomorphism between the fiber at the origin of γ and the fiber at the end of γ).

Lemma 2 One has: $T_{\gamma\gamma'} = T_{\gamma} \circ T_{\gamma'}$ for composition of compatible paths (in particular for loops at the same base point).

By definition, the *holonomy group at* $x \in X$ is the subgroup of $\operatorname{Aut}(E_x)$ generated by the T_γ for γ a *loop* based at x. One says that one is in the presence of *monodromy* when the condition (γ homotopic to γ') implies $(T_\gamma = T_{\gamma'})$. Observing that a connection $\nabla: \Omega^0(X, E) \to \Omega^1(X, E)$ uniquely extends to a covariant derivative

$$\Omega^0(X, E) \xrightarrow{\nabla} \Omega^1(X, E) \xrightarrow{\nabla} \Omega^2(X, E) \xrightarrow{\nabla} \dots$$

satisfying $\nabla(\omega \wedge \omega') = (d\omega) \wedge \omega' + (-1)^{|\omega|}\omega \wedge \nabla\omega'$, one may state a necessary and sufficient condition for monodromy to hold:

Definition 3 (Curvature of a connection) The map

$$\mathsf{K}^\nabla := \nabla \circ \nabla : \Omega^0(\mathsf{X},\mathsf{E}) \to \Omega^2(\mathsf{X},\mathsf{E})$$

is called the curvature of the connection ∇ . The connection ∇ is said to be flat if $K^{\nabla} = 0$.

Proposition 4

$$((\gamma \text{ homotopic to } \gamma') \implies (T_{\gamma} = T_{\gamma'})) \text{ iff } (K^{\nabla} = 0).$$

Therefore, in the presence of a *flat connection*, the following map is well-defined and it is a group morphism by lemma 2:

$$\rho: \pi_1(X, x) \longrightarrow \operatorname{Aut}(\mathsf{E}_x)$$
$$[\gamma] \longmapsto \mathsf{T}_{\gamma}.$$

This representation of $\pi_1(X, \mathbf{x})$ is called the *monodromy representation* associated to the flat connection ∇ on $(\mathsf{E} \to \mathsf{X})$. We have seen that such a representation arises when holonomy depends only on homotopy.

The KZ system

1. Monodromy representations of Artin's braid group. In order to construct, as in the above section, a monodromy representation of Artin's braid group

(*)
$$B_n = <\sigma_1, ..., \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| \ge 2$$

and $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} > 0$

the first step is to find a manifold X_n satisfying $\pi_1(X_n) = B_n$. Here, X_n will be the configuration space of n pairwise distinct points in the complex plane, up to permutation:

$$X_n = Y_n/\mathfrak{S}_n \text{ where } Y_n = \{(z_1, \dots, z_n) \in \mathbb{C}^n \mid i \neq j \implies z_i \neq z_j\}.$$

Then, we need to construct a vector bundle on X_n and a flat connection on this bundle. We start with a vector space W and consider the trivial bundle $((Y_n \times W) \to Y_n)$. The Knizhnik-Zamolodchikov system is the following system of differential equations:

(KZ):
$$dw = \sum_{1 \leqslant i < j \leqslant n} \frac{dz_i - dz_j}{z_i - z_j} A_{ij}.w,$$

where $w: Y_n \to W$ is a function and the A_{ij} are endomorphisms of W. Here, the bundle is trivial, so the connection whose horizontal sections $(\nabla \sigma = 0)$ correspond to solutions of the KZ system is:

$$abla^{\mathsf{KZ}} = \mathsf{d} - \Gamma, \ \mathrm{where} \ \Gamma = \sum_{\mathbf{i} < \mathbf{i}} \frac{\mathsf{d} z_{\mathbf{i}} - \mathsf{d} z_{\mathbf{j}}}{z_{\mathbf{i}} - z_{\mathbf{j}}} \mathsf{A}_{\mathbf{i}\mathbf{j}}.$$

Proposition 5 The following conditions are sufficient for the KZ connection ∇^{KZ} to be flat:

$$(**) \begin{cases} [A_{ij}, A_{kl}] = 0 \text{ for all pairwise distinct } \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l} \\ [A_{ij}, A_{ik} + A_{jk}] = 0, \\ [A_{jk}, A_{ij} + A_{ik}] = 0. \end{cases}$$

From now on, we assume that the connection ∇^{KZ} is flat, that is, that conditions (**) are satisfied by the endormorphisms A_{ij} of W. Then, by the considerations of the first section of this poster, we have a monodromy representation $\pi_1(Y_n) \to \mathsf{Aut}(W)$. The fundamental group $\pi_1(Y_n)$ is the pure braid group P_n , satisfying $\mathsf{B}_n = \mathsf{P}_n/\mathfrak{S}_n$. Recall likewise that $\mathsf{X}_n = \mathsf{Y}_n/\mathfrak{S}_n$. If we assume additionally that \mathfrak{S}_n acts on W , then one can consider the (non-trivial) vector bundle $(\mathsf{E}_n := (\mathsf{Y}_n \times \mathsf{W})/\mathfrak{S}_n \to \mathsf{X}_n)$, with fibre W above X_n . Here \mathfrak{S}_n acts on $\mathsf{Y}_n \times \mathsf{W}$ in such a way that $(z_1, \ldots, z_n, \sigma.\mathsf{w}) = (z_{\sigma(1)}, \ldots, z_{\sigma(n)}, \mathsf{w})$ in E_n . Then, if the connection ∇^{KZ} on $((\mathsf{Y}_n \times \mathsf{W}) \to \mathsf{Y}_n)$ is invariant under the action of \mathfrak{S}_n (permutation of indices $\mathsf{i} \mapsto \sigma(\mathsf{i})$), it induces a connection ∇^{KZ} on $(\mathsf{E}_n \to \mathsf{X}_n)$. Since the two bundles have the same fibre W , relations (**) are automatically satisfied and this induced connection is flat. Hence a monodromy representation

$$\rho_n^{\mathsf{KZ}}: \mathsf{B}_n = \pi_1(\mathsf{X}_n) \longrightarrow \mathsf{Aut}(\mathsf{W}).$$

- **2. Construction of a KZ system.** For the above construction to make sense, one needs to specify a vector space W and endomorhisms A_{ij} of W satisfying relations (**), as well as an action of \mathfrak{S}_n on W leaving the connection ∇^{KZ} invariant. To construct such a system, the initial data will be:
- \bullet a complex semisimple Lie algebra $\mathfrak{g}.$
- a symmetric \mathfrak{g} -invariant 2-tensor $\mathbf{t} = \sum_{\mathbf{r}} \mathbf{x}_{\mathbf{r}} \otimes \mathbf{y}_{\mathbf{r}} \in \mathfrak{g} \otimes \mathfrak{g}$ (such an element can always be constructed from the Casimir element $\mathbf{C} \in \mathcal{Z}(\mathcal{U}(\mathfrak{g}))$ of $\mathcal{U}(\mathfrak{g})$, see [1]).
- ullet a complex parameter $\mathbf{h} \in \mathbb{C}$.
- an integer $n \geqslant 2$.
- ullet a finite-dimensional ${\mathfrak g}$ -module V.

First, set $W = V^{\otimes n}$: W is a \mathfrak{g} -module and \mathfrak{S}_n acts on W by permutation of coordinates. Second, define:

$$\mathsf{t}_{ij} = \sum_{\mathtt{r}} \alpha_{\mathtt{r}}^{(1)} \otimes \cdots \otimes \alpha_{\mathtt{r}}^{(n)} \in (\mathcal{U}(\mathfrak{g}))^{\otimes n}$$

where

$$\alpha_{\mathbf{r}}^{(\mathbf{i})} = \mathbf{x}_{\mathbf{r}}, \, \alpha_{\mathbf{r}}^{(\mathbf{j})} = \mathbf{y}_{\mathbf{r}} \text{ and } \alpha_{\mathbf{r}}^{(\mathbf{k})} = 1 \text{ if } \mathbf{k} \neq \mathbf{i}, \mathbf{j}.$$

Lemma 6 Since V is a \mathfrak{g} -module (or equivalently a $\mathfrak{U}(\mathfrak{g})$ -module), the $t_{ij} \in (\mathfrak{U}(\mathfrak{g}))^{\otimes n}$ induce endomorphisms of $W = V^{\otimes n}$. These endormorphisms satisfy relations (**).

The proof of this lemma follows from the construction of the t_{ij} and the \mathfrak{g} -invariance of $t\in\mathfrak{g}\otimes\mathfrak{g}$.

Lemma 7 For all i, j, one has $t_{ij} = t_{ji}$.

The proof of this lemma follows from the symmetry of the 2-tensor $t \in \mathfrak{g} \otimes \mathfrak{g}$. We can then set $A_{ij} = \frac{h}{2i\pi} t_{ij} \in End(V^{\otimes n})$ and the KZ system becomes:

(KZ'):
$$dw = \frac{h}{2\sqrt{-1}\pi} \sum_{1 \le i \le j \le n} \frac{dz_i - dz_j}{z_i - z_j} t_{ij}.w.$$

By lemmas 6 and 7, the associated KZ connection is flat and \mathfrak{S}_n -invariant. Therefore, by the considerations of subsection $\mathbf{1}$, one has a monodromy representation

$$\rho_n^{\mathsf{KZ}}: \mathsf{B}_n = \pi_1(\mathsf{X}_n) \longrightarrow \mathsf{Aut}(\mathsf{V}^{\otimes n}).$$

Observe that the KZ system (KZ') depends linearly on the parameter **h**, and therefore its solutions depend *analytically* on **h**. This dependance may be expressed by a group morphism:

$$\rho_n^{\mathsf{KZ}} : \mathsf{B}_n = \pi_1(\mathsf{X}_n) \longrightarrow \mathsf{Aut}_{\mathbb{C}[[\mathsf{h}]]}(\mathsf{V}^{\otimes \mathsf{n}}[[\mathsf{h}]]). \tag{1}$$

Thus, we have a family of monodromy representations of the braid group B_n and the objective of the next section is to describe this monodromy in the best possible way.

The quantum group $\mathcal{U}_{h}(\mathfrak{g})$

We now proceed with a more algebraic construction of braid group representations.

1. Braid group representations from R-matrices. Recall the presentation (*) of the braid group B_n . To construct representations of B_n , one may use Artin's theorem:

Lemma 8 (Universal property of the braid group) Given a group G and elements $c_1, ..., c_n \in G$ satisfying $c_i c_j = c_j c_i$ if $|i - j| \ge 2$ and $c_i c_{i+1} c_i = c_{i+1} c_i c_{i+1}$, there exists a unique group morphism $B_n \to G$ sending σ_i to c_i .

Let now W be a vector space and \mathbf{c} be a linear automorphism of $W \otimes W$. Set $\mathbf{c_i} = \mathrm{Id}_{W^{\otimes (i-1)}} \otimes \mathbf{c} \otimes \mathrm{Id}_{W^{\otimes (n-i-1)}}$ for $1 \leq i \leq n-1$ and observe that by construction $\mathbf{c_i}\mathbf{c_j} = \mathbf{c_j}\mathbf{c_i}$ if $|\mathbf{i} - \mathbf{j}| \geq 2$ (note that $\mathbf{c_i} \in \mathrm{Aut}(W^{\otimes n})$). Then:

Proposition 9 One has $c_ic_{i+1}c_i = c_{i+1}c_ic_{i+1}$ iff $c \in Aut(W \otimes W)$ satisfies the Yang-Baxter equation, that is, iff one has, in $Aut(W \otimes W \otimes W)$, the equality:

$$(c\otimes \mathrm{Id}_W)(\mathrm{Id}_W\otimes c)(c\otimes \mathrm{Id}_W)=(\mathrm{Id}_W\otimes c)(c\otimes \mathrm{Id}_W)(\mathrm{Id}_W\otimes c).$$

Corollary 10 If $c \in Aut(W \otimes W)$ is a solution of the Yang-Baxter equation (such a solution is called an R-matrix), then there exists a unique group morphism $\rho_n^c : B_n \longrightarrow Aut(W^{\otimes n})$ such that $\rho_n^c(\sigma_i) = c_i$ for all i.

Hence, starting from a solution of the Yang-baxter equation, one may construct a representation of Artin's braid group B_n . To produce solutions of the Yang-Baxter equation, one may use the theory of braided bialgebras.

2. Topological braided bialgebras. A topological braided bialgebra is a topological bialgebra H endowed with an element $R \in H \hat{\otimes} H$, invertible in the algebra $H \hat{\otimes} H$, which makes the coproduct Δ of H quasi-cocommutative and which satisfies $(\Delta \hat{\otimes} Id_H)(R) = R_{13}R_{23}$ and $(Id_H \hat{\otimes} \Delta)(R) = R_{13}R_{12}$ in $H \hat{\otimes} H \hat{\otimes} H$. Such an element $R \in H \hat{\otimes} H$ is called a *universal* R-matrix because it produces solutions to the Yang-Baxter equation on *every* H-module W:

Proposition 11 If (H, R) is a topological braided bialgebra then, given an H-module W, there exists a solution of the Yang-Baxter equation c_W^R on W and therefore, by corollary 10, a braid group representation $\rho_n^R: B_n \longrightarrow \text{Aut}(W^{\hat{\otimes} n})$. Explicitly, $c_W^R(w_1 \hat{\otimes} w_2) = \tau_{W,W}(R.w_1 \hat{\otimes} w_2)$, where $\tau_{W,W}(w_1 \hat{\otimes} w_2) = w_2 \hat{\otimes} w_1$.

3. Quantum enveloping algebras. We now need examples of topological braided bialgebras. Consider the Drinfeld-Jimbo deformation $\mathcal{U}_h(\mathfrak{g})$ of the enveloping algebra $\mathcal{U}(\mathfrak{g})$ of a semisimple Lie algebra \mathfrak{g} (as a vector space, one has $\mathcal{U}_h(\mathfrak{g}) \simeq \mathcal{U}(\mathfrak{g})[[h]]$):

Theorem 12 The vector space $\mathcal{U}(\mathfrak{g})[[h]]$ is a topological bialgebra and possesses a universal R-matrix denoted R_h , with respect to which it is a braided quasi-cocommutative topological bialgebra.

Then, if V is a \mathfrak{g} -module (or equivalently a $\mathcal{U}(\mathfrak{g})$ -module), V[[h]] is a $\mathcal{U}_h(\mathfrak{g})$ -module and if one sets W = V[[h]], one has:

$$W^{\hat{\otimes} n} = (V[[h]])^{\hat{\otimes} n} \simeq (V^{\otimes n})[[h]].$$

The braid group representation associated to the universal R-matrix R_h of $\mathcal{U}_h(\mathfrak{g})$ by proposition 11 is therefore a group morphism

$$\rho_{n}^{R_{h}}: B_{n} \longrightarrow Aut_{\mathbb{C}[[h]]}(V^{\otimes n}[[h]]). \tag{2}$$

We can now state the Kohno-Drinfeld theorem, which asserts the *equivalence* between the two representations (1) and (2) whose constructions we recalled:

Theorem 13 (The Kohno-Drinfeld theorem) There exists a $\mathbb{C}[[h]]$ -automorphism \mathfrak{u} of $V^{\otimes n}[[h]]$ such that, for all $\mathfrak{b} \in B_n$, $\rho_n^{KZ}(\mathfrak{b}) = \mathfrak{u}\rho_n^{R_h}(\mathfrak{b})\mathfrak{u}^{-1}$.

References

[1] Christian Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.