Ho	dge numbers of moduli stacks of principal bundles	· ·
. .	$\Omega \widetilde{G_{ss}} \operatorname{Bun}_{G_X}^{d, \bullet} G^{2g_X}$	· · · · · · · · · · · · · · · · · · ·
. .	$\operatorname{Bun}_{G_X}^d$	· · ·
	Florent Schaffhauser (Heidelberg) Joint work with Melissa Liu (Columbia)	· ·
· ·	Algebraic Geometry and Complex Geometry Rencontres GDR GAGC – CIRM, Luminy 29 November 2022	· · ·

G-bundles on algebraic curves [smooth, projectine / C] g = gx = dim H°(X; sz;) [genus] G = GL(r; C), SL(r; C), SO(2r+1; C), ...no connected, reductive algebraic group /C $Bun_{G_X}: (Sch/c)^{op} \rightarrow groupoids$ $\longrightarrow \ \ \, \subset \ \ \, E \ \ \, \rightarrow \ \ \, S \times X \ \ >$ S-family of G-burdles on X

Poincaré series of the moduli stack of vector bundles Theorem (Harder-Narasimhan 1975, Atiyah-Bott 1983) For all dEZ, $P_{t}(V_{edt}(x,d); \Phi) = \frac{(1+t)^{2}}{1-t^{2}} \frac{r}{1-t^{2}} \frac{(1+t^{2k-1})^{2}}{(1+t^{2k-1})(1-t^{2k})}$ $H^{*}(V_{ect_{x}}(r,d)) \simeq H^{*}(\Omega SL(r;C)) \otimes H^{*}(BGL(r;C)) \otimes H^{*}(GL(r;C))^{U_{3x}}$ $\frac{1}{\frac{1}{t}(1-t^{2k})} \propto \prod_{k=1}^{r} (1+t^{2k-1})^{2jx}$ $\frac{1}{\frac{1}{1}} \left(1 - t^{2\lambda - \lambda}\right) = \frac{1}{1}$

Hodge-Poincaré series (Earl-Kirwan 2000) [+ Teleman 7998] Theorem $G = SL(t; C), \ldots$ For all de Er Z, $HP_{u,v}(Vect_{\chi}(r,d)) = \frac{(1+u)^{g_{\chi}}(1+u)^{g_{\chi}}}{1-u^{\gamma}} \frac{1}{k-1} \frac{(1+u^{k}v^{k-1})^{g_{\chi}}(1+u^{k-1}v^{k})^{g_{\chi}}}{(1-(uv)^{k-1})(1-(uv)^{k})}$ mo What about stacks of G-bundles For other G

[pure, over Q] Hodge structures a Q-rector space finite-dimensional A-rector spaces (V^{P,9}) P19 >0 isomorphism of C-rector spaces · 1 · such that VP19 = V918 as subspaces $\bullet F V_{a} := V_{a} \otimes_{a} C$ $HP_{n,v}(V_{c}) = \sum_{k=0}^{+\infty} \sum_{p+q=k}^{\infty}$ n'r⁹ dim V^P.9 Holge series 2+00

	· · · · · · · · · · · · · · · · · · ·
Cohomolog	y algebras
	X smooth projective variety / a:
· · · · · · · · · · · · ·	H* (X; C) has a Hodge structure,
[Hodge decomposition]	since $H^{k}(X; \mathbb{C}) \simeq \bigoplus H^{q}(X; \Omega_{X}^{p})$ $p_{tg}=k$
· · · · · · · · · · · · ·	$H^{p,q}(X)$
. .	G: connected, reductive algebraic group /C
. .	BG = [pt/G] the classifying stack of G
[Ocligne 1974]	H*(BG; C) has a Hodge structure

[Kubrak - Prikhodko 2019] Hodge-proper stacks M: a smooth algebraic stack (I $[Totaro 2018] H^{P,q}(M) := H^{q}(M; \Lambda^{P}L_{M})$ cotangent complex $H^{k}(\mathcal{M}; \mathbb{C}) \simeq H^{k}(\mathcal{M}) \simeq \bigoplus H^{p,q}(\mathcal{M})$ $De Rham \qquad Peq=6$ The Hodge-to-De-Rham spectral sequence degenerates at the E, - page The notion of Hadge - proper stack gives a safficient of condition on M for this to happen

Examples
$ (\mathbb{C}^*) ' \qquad B H \simeq (\mathbb{C}^{P^{\infty} }) ' $
$H^*(\mathcal{B}\mathcal{H};\mathcal{C})\simeq \mathcal{C}[\mathcal{L}_1,\ldots,\mathcal{L}_r]$
$\mathcal{L}_{\mathcal{L}} \in \mathbb{H}^{1/2}(\mathcal{B}\mathcal{H})$
$HP_{u,v} (BH) = \frac{1}{(1-uv)^{r}} \in \mathbb{Q}(u,v) \cap \mathbb{Q}[u,v]$
2) Greductive, HCG maximal torus, W keyl group
$H^*(BG; GI \xrightarrow{\sim} H^*(BH; G)^{W} \subset H^*(BH; G)$
I[I,,-,Ir] I: homogeneous polynomial
$I_{k} \in H^{a_{k},a_{k}}(BG)$ in $(n_{\eta,\dots,\eta})$

Hodge series of BG d_= -- = dm = 7 < dm = 5 -- 5 dr ("exponents of G") m = dim ZG HP (BG) = $(1-uv)^{m} \overline{T} (1-(uv)^{d_{k}})$ Example: G = GL(r; C), $W = O_r$, m = 7 $H^*(BGL(r; C); C) \simeq C[C_1, ..., C_r]$ universal Chern classes

Topological classification of G-bundles			
× × × × × × × × × × × × × × × × × × ×) [smooth; p	ojectin (C]
$E \rightarrow X$	$(=2) \qquad \qquad$	1 G-bandle 2 obstruction a T(-) trivial	if Graneeted
deg(E) Am °2 ($E \in H^{L}(X)$	$\pi_{\Lambda}G \rightarrow \pi_{\Lambda}G$	(X oriented)
Example	G = GL(r; C) $G = SO(r; C)$	$o_{2}(E) = c_{1}(E)$ $o_{2}(E) = w_{2}(E) (E)$	$\begin{array}{c} \mathcal{L}^{\mu}(\mathbf{x};\mathbf{z}) \simeq \mathbf{z}.\\ \mathcal{L}^{\mu}(\mathbf{x};\mathbf{z}_{122}) \simeq \mathbf{z}.\\ \mathcal{L}^{\mu}(\mathbf{x};\mathbf{z}_{122}) \simeq \mathbf{z}.\\ \mathcal{L}^{\mu}(\mathbf{x};\mathbf{z}_{122}) \simeq \mathbf{z}.\\ \mathcal{L}^{\mu}(\mathbf{x};\mathbf{z}_{122}) \simeq \mathbf{z}. \end{array}$

Components of the moduli s	tack
Bung = d	ET G
$S \in Sch/c$:	irreducible open and closed substacks
$\operatorname{Bur}_{G_{X}}^{d}(S) = \langle \mathbb{E} - S \rangle,$	$(X \forall s \in S(\varpi), deg \mathbb{E}_s = d)$
$\sum_{x \in X} X \times Bun_{G_{x}}^{a} carries$	$ \begin{array}{c} \alpha & universal & bundle \\ 0 & \longrightarrow & EG \end{array} $
Burd X X C Bur	$\begin{array}{c} \overset{\circ}{\underset{S}{\overset{\circ}}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\underset{S}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\underset{S}{\overset{\circ}}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}} \overset{\circ}}{\overset{\circ}} \overset{\circ}} $

Hodge series of the components Theorem (Lin - S.) For all d E TT, G, $HP_{u,v}\left(Bun_{G_{X}}^{d}\right) = \left(\frac{(1+u)^{S_{X}}(1+v)^{S_{X}}}{1-u^{v}}\right)^{m} \frac{1}{\left[1-\frac{(1+u)^{S_{X}}(1+u)^{S_{X}}}{(1+u)^{S_{X}}}\right]^{m}} \frac{1}{\left[1-\frac{(1+u)^{S_{X}}(1+u)^{S_{X}}}{(1+u)^{S_{X}}}\right]^{S_{X}}} = \frac{1}{(1-u^{v})^{S_{X}}} \frac{1}{(1-u^{v})^{S_{X}}} \frac{1}{(1-u^{v})^{S_{X}}} \frac{1}{(1-u^{v})^{S_{X}}}}{(1-u^{v})^{S_{X}}}$ Remarks (i) This confirms a conjecture of Behrend and Ohillon (2007), obtained by a notivic approach. (ii) $HP_{u,v}(Bur_{G_X}^d)$ is seen to be independent of d. (iii) m = 0: Teleman (1998), using algebraic loop groups.

Ingredients of the proof
(i) Hodge theory of the base curve X.
(ii) Atiyah - Bott generators of $H^*(Bun_{G_X}^d; \mathbb{C})$.
(ic) Recall that
$H^*(BG; C) \simeq C[I_{\lambda_1},, I_{\lambda_r}]$
where $I_k \in H^{d_k, d_k}(BG; \mathbb{C})$ is a
universal characteristic closs.
So the universal bandle U(-> X x Bun Gx
defines cohomology classes T. (U.) E H ^{2k} (Bund XX; C).
$:= ev^{\ddagger} I_{k}, \text{ where } ev : X \times Bun_{G_{\chi}}^{d} \longrightarrow BG.$

Künneth decomposition $H^{24_{\epsilon}}(Bun_{G_{\star}}^{d} \times X; \mathbb{C}) \simeq H^{24_{\epsilon}}(Bun_{G_{\star}}^{d}; \mathbb{C}) \otimes H^{\circ}(X; \mathbb{C})$ $\oplus H^{2d_{i}-1}(Bun_{G_{x}}^{d}; \mathbb{C}) \otimes H^{1}(X; \mathbb{C})$ Be de B. α_1 β_2 β_2 β_2 β_1 β_1 β_2 β_1 β_1 β_2 β_1 β_2 β_1 β_1 β_2 β_1 β_1 β_2 β_3 β_1 β_2 β_3 β_1 β_2 β_3 β_3 β_1 β_2 β_3 β_3 β_3 β_1 β_2 β_3 $\oplus H^{2d_{2}-2}(\operatorname{Bun}_{G_{X}}^{\lambda}; Cl \otimes H^{\bullet}(X; C)$ $T_{L}(U) = h_{L} \otimes 1 + \sum_{i=1}^{\infty} (a_{i} \otimes a_{j}^{*} + b_{i} \otimes \beta_{i}^{*}) + F_{L} \otimes \omega$ $H^{2d_{\varepsilon}-1}\left(\operatorname{Bur}_{G_{\varepsilon}}^{d}, \mathbb{C}\right) \qquad H^{2d_{\varepsilon}-2}\left(\operatorname{Bur}_{G_{\varepsilon}}^{d}, \mathbb{C}\right)$ H^{2de} (Burd ; C)

Applying Leray-Hirsch	$\Omega \widetilde{G}_{ss} \cdot \cdot$	$ \operatorname{Bun}_{G_X}^{d,\bullet} \operatorname{holonom}_{G_X} G^{2g_X}$
Theorem (Atiyah-Bott, 1983)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$H^*(Bun_{G_x}^{\ \ }; \mathcal{L}) \simeq \mathbb{C}[h_1, \dots]$	hr, Fm+1,	, f.]
$\bigotimes_{a} \bigwedge_{a} [(a)]$	\mathbf{j}	$f \in \mathcal{J}_{x}, i \in \mathcal{L} \in \mathcal{I}$
E herce the Po	in care set	res]
~s depends on a choice of l	asis for	$H^{1}(x; \mathbb{C}).$

Hodge classes no need a different basis for H'(X;C): $H^{1}(x; C) \simeq H^{\circ}(x; \mathcal{R}^{1}) \oplus H^{1}(x; \mathcal{R}^{\circ})$ Choose wi such that: $\omega_{i} = \delta_{i} \delta_$ (1,0) - classes (0,1)- classes The two bases $(a_j^*, \beta_j^*)_{1 \leq j \leq g_X}$ and $(w_j, \overline{w_j})_{1 \leq j \leq g_X}$ are related via the period matrix of $(X, (x_j, f_i) : \tau_{ij} \in g_x)$: $(\tau_{ij} = \int_{F_j} \omega_i)$ symplectic basis of $H_1(X; C)$

New generators $spar_{G}\left(a_{L}^{i},b_{L}^{i}:\tau \leq j \leq g_{x}\right) = spar_{G}\left(\partial_{L}^{i},\overline{\partial_{L}^{i}}:\tau \leq j \leq g_{x}\right)$ $H^*(Bun_{G_X}^d; \mathcal{C}) \simeq \mathbb{C}[h_1, \dots, h_r, F_{m+1}, \dots, F_r]$ $\bigotimes_{\mathcal{C}} \bigwedge_{\mathcal{C}} \left[(O_{L}^{j}, O_{L}^{j})_{1 \in j \leq g_{X}, 1 \leq L \leq r} \right].$ Hence the Hodge series.

Odd colomology Eridently, Hodd (Bung, C) = 0 Bat more precisely, $H^{p,q}(Bun_{G_{2}}^{k}) \neq 0 \neq 1 = 9$. In contrast, $H^{p,q}(BG) \neq 0 =$ j = q. ma it is the odd cohomology of X which, in view of the Kinneth decomposition, causes classes in H²/₄⁻¹ (G; G) to pull back to Hodge classes of type (de - 1, de) and $(d_{\varepsilon}, d_{\varepsilon} - 1)$ in $H^{*}(Bun_{G_{\varepsilon}}, C)$.

Poincaré series For n=v=t, the Hodge series $HP_{u,v}\left(Bun_{G_{x}}^{d}\right) = \left(\frac{(1+u)^{3^{\prime}}(1+u)^{3^{\prime}}}{1-u^{\prime}}\right)^{m} \frac{1}{\left[1-(1+u)^{4^{-1}}\right]^{3^{\prime}}(1+u^{4^{-1}})^{4^{\prime}}}{1+u^{4^{-1}}} \left(1-(u^{\prime})^{4^{-1}}\right)^{4^{\prime}}(1-(u^{\prime})^{4^{\prime}})^{4^{\prime}}}$ specializes to the Poincare series $P_{t}\left(Bur_{G_{X}}^{d}\right) = \left(\frac{(1+t)^{2}}{1-ur}\right)^{m} \frac{t}{\left(1-t^{2}d_{t}^{-2}\right)} \frac{1+t}{(1-t^{2}d_{t}^{-2})(1-t^{2}d_{t})}$ [Laumon-Rapoport, 7996]

Real structures

Romagny (2005)

([smooth, projectin/R] a maximal curve (n = g + 1)Theorem Over (X, Z) maximal and for G=GL(r, C) the Hudge series of Burg & specializes, for u= t and v= 1, to the mod 2 Poincaré series of the substact of real points RBung: $HP_{t,1}(Bun_{G_{X}}) = \frac{2^{9x}}{1-t} \frac{(1+t-1)^{9x}}{1-t} \prod_{k=2}^{t} \frac{(1+t^{k-1})^{9x}}{(1-t^{k-1})(1-t^{k})}$ in the sense of

of connected components of RBund by S. (2012) $G_x = P_E(RBund_{G_x}; 2/22)$ by Lin-S. (2013)

Maximal varieties
A real variety (X Z) is called maxing
if the Swith inequality
$P_{E}(IRX; Z/22) \leq P_{E}(X; Z/22)$
is an equality, i.e. $b_{0}(\mathbb{R}X) + \cdots + b_{n}(\mathbb{R}X) = b_{0}(X) + \cdots + b_{2n}(X) \cdot [n = \dim X]$
<u>Definition</u> (Brugallé - S., 2022) <u>A real variety</u> (X, Z) is called Hodge-expressive
smooth, projective if: (i) $H^*(X; Z)$ is torsion - free. (ii) $P_E(RX; Z/2Z) = HP_{c,1}(X)$.

Hodge-expressive varieties are maximal $h^{n,n}$ $h^{n,i}$ $h^{i,n-i}$ $h^{n,0}$ **L**0,n 6 (RX) = Z h" $h^{0,i}$ $L(\mathbb{R}X)$ $h^{0,0}$ (Brugallé) Kemark For such vorieties, $\mathcal{K}(\mathbb{R}X) = \sigma(X)$ $[since \notin (IRX) = P_t(IRX)]_{t=-1} = HP_{t,1}(X)$ $= \sigma(X)$

Maximality of moduli spaces of vector bundles
Theorem (Brugallé - S., 2022)
If (X, τ) is maximal and $rnd = 1$,
then the moduli space of semistable vector bundles of rank r and degree d
is Hodge-expressive, herce also maximal.
no new proof of this now follows from
joint work with Lin
[closed formula for HPu, (Bun (, s))]

Semistability
Definition (Ramanathan, 1975)
A principal G-bundle E -> X is called
semistable if, for all maximal parabolic
subgroup PCG and all reduction of structure
Group $\sigma: X \rightarrow E/p$
deg $\left(\sigma^* E(\frac{9}{4})\right) \gtrsim 0$.
Equivalently, if Ep is the reduction of E to P,
deg $(ad(E_{\rho})) \leq 0$.
Point Bung diss C Bung is an open substack and
it admits a coarse moduli space Mass.

Harder-Narasimhan type Theorem (Atiyah - Bott, 1983) Let E -> X be a principal bundle. Then there exists a canonical reduction of structure group to a parabolic subgroup PCG such that, if L = P/R, (P) is the Leni Factor, the L-bundle Ep x L is semistable. Point This induces a partition ("stratification") of Bund into Harder-Narasinhan types. = topological type of of EpxpL as an L-bundle

Perfect stratification Codimension of J Burp in Bur Gx Theorem (Lin-S.) For all d E TI, G, $H_{u,v}(Bun_{G_{v}}, \mathcal{I}) = \sum (uv)^{n} H_{u,v}(Bun_{p}, \mathcal{I})$ $\mu \in I(G, d)$ G-bundles of set of type p Harder-Nacosinhan types for G-bundles of degree d Vj20, only strata of codimension 5 1 Point contribute to the cohomology in degree j: $H^{i}(Bun_{G_{\chi}}^{d}; \mathbb{C}) = H^{i}(\bigcup_{\mu \mid d_{\mu} \leq 1}^{d} Bun_{\mu}; \mathbb{C})$

Recursive formula	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · ·
The morphism	of algebra	ic stacks	-> topological
Bun		Sun L _x	of EpxpLas
· · · · · · · · · · · · · · · · · · ·	F F	γ L ρ ρ	an L- wardie
is an acyclu	ic Fibration,		
H,	, (Bunn) ~	Hu, (Bun L	
Therefore	· · · · · · · · · · · ·		
$HP_{u,v}\left(Bu_{G_{x}}^{d,ss}\right) =$	H _{y,v} (Bun _{Gx})	$-\sum_{\mu\in I(G,d)\setminus \mu_{ss} }$	d_{μ} $HP_{u,v}(Bun_{L_{x}})$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

The closed formula generalizing the inversion Formula of Lannon-Rapoport (1996) from one to two variables, we get: Theorem (Lin-S.) Let PCG be a parabolic subgroup and let a ,, v (L(P)) be the Hodge series of Bun L(P). There exists an (explicit) rational Fraction bu, (P) E Q (u, v), independent of X, such that $HP_{u,v}\left(Bu_{G_{X}}^{d,ss}\right) = \sum_{\substack{x \in P \subset G}} a_{u,v}\left(L(P)\right) b_{u,v}\left(P\right)\left(uv\right)^{\binom{G-1}{dx}} \frac{d_{u}R_{u}(P)}{2}$ parabolic