NILPOTENT ORBITS AND THEIR FUNDAMENTAL GROUP IN THE CLASSICAL CASE

LIVA DILER

Abstract

As observed in the $\mathfrak{s l}_{n}$ case, nilpotent orbits are closely related to the set $\mathscr{P}(n)$ of partitions of n. This observation leads to the question if one can classify nilpotent orbits for other Lie algebras in the same fashion. We will handle the classical case, giving a complete classification of nilpotent $G_{\text {ad }}$-orbits in $\mathfrak{S I}_{n}, \mathfrak{S p}_{2 n}, \mathfrak{S o}_{2 m+1}$ and $\mathfrak{S 0}_{2 m}$. Moreover, we will show that this correspondence also behaves nicely when changing to a more interesting category than Set. Having studied the combinatorial nature of nilpotent orbits, we will apply the results from the first section to give a formula for the fundamental group $\pi_{1}\left(\mathscr{O}_{X}\right)$, as well as the $G_{\text {ad }}$-equivariant fundamental group $\mathscr{A}\left(\mathscr{O}_{X}\right)$ in the classical case. As an application, we will conclude by throwing a quick glance at the construction of explicit standard triples for $\mathfrak{s l}_{n}$ and $\mathfrak{s p}_{2 n}$.

Contents

1. Preliminaries 1
2. Partition Type Classifications 2
3. Topology of Nilpotent Orbits 6
3.1. The Closure Ordering 6
3.2. The Fundamental Group and $\mathscr{A}(\mathscr{O})$ 8
4. Explicit Standard Triples 13
References 17

1. Preliminaries

Definition 1.1 (Partition). A partition of a natural number n is a tuple $\left[d_{1}, \ldots, d_{n}\right] \in \mathbb{N}^{n}$ such that

$$
\sum_{i} d_{i}=n \text { and } d_{1} \geq d_{2} \geq \cdots \geq d_{n}
$$

Two partitions $\left[d_{1}, \ldots, d_{n}\right]$ and $\left[p_{1}, \ldots, p_{n}\right]$ are said to be equal, if their nonzero parts agree. The set of all partitions of n is denoted $\mathscr{P}(n)$.

Remark 1.2.
$\star d_{i} \neq 0$ for all $i \Longleftrightarrow d_{i}=1$ for all i.
\star Occasionally, we will denote a partition $\left[d_{1}, \ldots, d_{n}\right]$ simply by \mathbf{d}.

Definition 1.3 (Exponential Notation). We write $\left[t_{1}^{i_{1}}, \ldots, t_{r}^{i_{r}}\right]$ to denote the partition $\left[d_{1}, \ldots, d_{n}\right]$, where

$$
d_{j}= \begin{cases}t_{1} & 1 \leq j \leq i_{1} \\ t_{2} & i_{1}+1 \leq j \leq i_{1}+i_{2} \\ t_{3} & i_{1}+1_{2}+1 \leq j \leq i_{1}+i_{2}+i_{3} \\ \vdots & \vdots\end{cases}
$$

Example 1.4. In exponential notation, we write

$$
\left[4,3^{2}, 2^{3}, 1,0^{10}\right]=[4,3,3,2,2,2,1,0, \ldots, 0]
$$

for the partition of 17 .
Definition 1.5 (Very even partition). A partition $\left[d_{1}, \ldots, d_{n}\right]$ of n is called very even, if for all i, d_{i} is even and has even multiplicity.

2. Partition Type Classifications

Let $\epsilon= \pm 1$ and consider a non-degenerate form $\langle\cdot, \cdot\rangle_{\epsilon}$ on \mathbb{C}^{m}, such that

$$
\langle A, B\rangle_{\epsilon}=\epsilon\langle B, A\rangle_{\epsilon} \text { for all } A, B \in \mathbb{C}^{m} .
$$

Remark 2.1.
\star If $\epsilon=-1,\langle\cdot, \cdot\rangle_{\epsilon}$ is symplectic.
\star If $\epsilon=1,\langle\cdot, \cdot\rangle_{\epsilon}$ is symmetric.
Definition 2.2 (Isometry Group). Denote by
$\star I\left(\langle\cdot, \cdot\rangle_{\epsilon}\right)=\left\{x \in G L_{m}(\mathbb{C}) \mid\langle x A, x B\rangle_{\epsilon}=\langle A, B\rangle_{\epsilon}\right.$ for all $\left.A, B \in \mathbb{C}^{m}\right\}$ the isometry group of $\langle\cdot, \cdot\rangle_{\epsilon}$ on \mathbb{C}^{m}, and by
$\star \mathfrak{g}_{\epsilon}=\left\{X \in \mathfrak{s l}_{m} \mid\langle X A, B\rangle_{\epsilon}=-\langle A, X B\rangle_{\epsilon}\right.$ for all $\left.A, B \in \mathbb{C}^{m}\right\}$ its Lie algebra.
This definition is well defined: Since $I\left(\langle\cdot, \cdot\rangle_{\epsilon}\right)$ is a closed subgroup of the Lie group $G L_{m}(\mathbb{C})$, it is itself a Lie group by Cartans closed-subgroup theorem. Thus, one can speak of its Lie algebra.

Remark 2.3.
\star If $\epsilon=-1, m=2 n$ must be even, so $I\left(\langle\cdot, \cdot\rangle_{\epsilon}\right)=S p_{2 n}$.
\star If $\epsilon=1, I\left(\langle\cdot, \cdot\rangle_{\epsilon}\right) \cong O_{m}$ and $\mathfrak{g}_{1} \cong \mathfrak{s o}_{m}$.
If $\epsilon=-1$, the adjoint group of \mathfrak{g}_{ϵ} is $P S p_{2 n}:=S p_{2 n} /\{ \pm I\}$ and its orbits coincide with those of $S p_{2 n}$. If $\epsilon=1$ and m is odd, then $I\left(\langle\cdot, \cdot\rangle_{\epsilon}\right)=O_{m}$ is the direct product its center $\{ \pm I\}$ with the adjoint group $S O_{m}$ of \mathfrak{g}_{ϵ}, so again, the orbits coincide. The problem arises however, when $\epsilon=1$ and m is even. Then the adjoint group of g_{ϵ} becomes $P S O_{m}:=S O_{m} /\{ \pm I\}$, and its orbits do not coincide with those of O_{m}. As we shall later see, there can only be one O_{m}-orbit attached to a very even partition $\mathbf{d} \in \mathscr{P}(m)$. It turns out that this orbit is the union $\mathscr{O}_{\mathbf{d}}^{I} \cup \mathscr{O}_{\mathbf{d}}^{I I}$ of two orbits corresponding to d .

Set

$$
\mathscr{P}_{\epsilon}(m)=\left\{\left[d_{1}, \ldots, d_{n}\right] \in \mathscr{P}(m): \#\left\{j \mid d_{j}=i\right\} \text { is even for all } i \text { with }(-1)^{i}=\epsilon\right\}
$$

Let g be a classical Lie algebra with standard representation on \mathbb{C}^{n}, i.e.

$$
X \cdot v:=X(v) \text { for all } X \in \mathfrak{g}, v \in \mathbb{C}^{n}
$$

If $X \in \mathfrak{g}$ is nilpotent, then we can also regard X as a nilpotent element of $\mathfrak{S I}_{n}$. Then there is a corresponding partition $\mathbf{d}=\left[d_{1}, \ldots, d_{n}\right]$ and moreover, belongs to a standard
triple in $\mathfrak{s l}_{n}$. However, we can also attach to X a standard triple $\{H, X, Y\} \subset \mathfrak{g}$, which is conjugate under $G L_{n}$ to the first triple. Denote by a the span of $\{H, X, Y\}$.

Lemma 2.4. The nonzero d_{i} are exactly the dimensions of the irreducible summands of the standard representation \mathbb{C}^{n}, regarded as an a-module.

Our next goal is to establish a bijective correspondence between nilpotent orbits in $\mathfrak{s p}_{2 n}$, resp. $\mathfrak{s o}_{m}$, and certain partitions of $2 n$, resp. m.
Let's start with the case $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Let $\langle\cdot, \cdot\rangle$ be the non-degenerate symplectic form on $\mathbb{C}^{2 n}$ which is preserved by $G_{a d}$. We get an \mathfrak{a}-module decomposition

$$
\mathbb{C}^{2 n}=\bigoplus_{r \geq 0} M(r)
$$

where $M(r)$ is a finite direct sum of irreducible \mathfrak{a}-modules (i.e. representations of $\mathfrak{s l}_{2}$) of highest weight r. By the above Lemma, we can read off the dimension of the summands from the partition $\left[d_{1}, \ldots, d_{n}\right]$ of X, regarded as a matrix in $\mathfrak{s l}_{2 n}$. For $r \geq 0$, denote by $H(r)$ the highest weight space in $M(r)$. Note that

$$
\operatorname{dim} H(r)=\operatorname{mult}\left(\rho_{r}, M(r)\right)
$$

where ρ_{r} denotes the irreducible \mathfrak{a}-module of highest weight. Now, to equip $H(r)$ with a bilinear form, put

$$
(v, w)_{r}:=\left\langle v, Y^{r} \cdot w\right\rangle \text { for all } v, w \in H(r)
$$

Lemma 2.5. The form $(\cdot, \cdot)_{r}$ is symplectic (resp. symmetric) if r is even (resp. odd).
Proof. Using \mathfrak{g}-invariance, we get

$$
\begin{aligned}
(v, w)_{r} & =\left\langle v, Y^{r} \cdot w\right\rangle \\
& =\left\langle v, \operatorname{ad}_{Y}^{r}(w)\right\rangle \\
& =\left\langle[v, Y] \cdot Y^{r-1}, w\right\rangle \\
& =\langle[\ldots[v, Y] \ldots, Y], w\rangle \\
& = \begin{cases}\left\langle Y^{r} \cdot v, w\right\rangle & r \text { even } \\
-\left\langle Y^{r} \cdot v, w\right\rangle & r \text { odd }\end{cases} \\
& = \begin{cases}-(w, v) & r \text { odd } \\
(w, v) & r \text { even }\end{cases}
\end{aligned}
$$

Lemma 2.6. The form $(\cdot, \cdot)_{r}$ is non-degenerate for all r.
Proof. Note that the r-weight space of $\mathbb{C}^{2 n}$ is $\langle\cdot, \cdot\rangle$-orthogonal to its s-weight space, whenever $s \neq-r$, by the invariance of ad_{H} relative to $\langle\cdot, \cdot\rangle$. Suppose $r \geq 0$. Then $H(r)$ has a canonical complement in the full r-weight space. It is spanned by all vectors in this weight space lying in $\langle Y\rangle$. Since $Y^{r+1} \cdot H(r)=0$, we see that $H(r)$ is orthogonal to this complement with respect to $(\cdot, \cdot)_{r}$. By $\mathfrak{s l}_{2}$ theory, $Y^{r} \cdot H(r)$ is the lowest weight space in $M(r)$, and it pairs non-degenerately with $H(r)$ via $\langle\cdot, \cdot\rangle$. Thus, $(\cdot, \cdot)_{r}$ is non-degenerate.

Since the irreducible representation of highest weight r has dimension $r+1$ and nondegenerate symplectic forms exist only in even dimension, we deduce the following result.

Corollary 2.7. The partition $\left[d_{1}, \ldots, d_{n}\right]$ of X lies in $\mathscr{P}_{-1}(2 n)$, i.e. its odd parts occur with even multiplicity.

Thus, we get a well-defined map

$$
\begin{aligned}
\Pi_{-1}:\left\{\text { nilpotent } I(\langle\cdot, \cdot\rangle) \text {-orbits in } \mathfrak{s p}_{2 n}\right\} & \rightarrow \mathscr{P}_{-1}(2 n) \\
\mathscr{O}_{\left[d_{1}, \ldots, d_{2 n}\right]} & \mapsto\left[d_{1}, \ldots, d_{2 n}\right]
\end{aligned}
$$

The case $\mathfrak{g}=\mathfrak{s o}_{m}$ is analogous. Again, let $\langle\cdot, \cdot\rangle$ be the non-degenerate form on \mathbb{C}^{m} preserved by $G_{\text {ad }}$. Denote by \mathfrak{a} the span of a standard triple $\{H, X, Y\}$. Consider again the decomposition

$$
\mathbb{C}^{m}=\bigoplus_{r \geq 0} M(r)
$$

and define $H(r)$ and $(\cdot, \cdot)_{r}$ exactly as above.
Lemma 2.8. The form $(\cdot, \cdot)_{r}$ is symmetric (resp. symplectic) if r is even (resp. odd).
Corollary 2.9. The partition $\left[d_{1}, \ldots, d_{n}\right]$ of X lies in $\mathscr{P}_{1}(m)$, i.e. its odd parts occur with even multiplicity.

Thus, we get a well-defined map

$$
\begin{aligned}
\Pi_{1}:\left\{\text { nilpotent } I(\langle\cdot, \cdot\rangle) \text {-orbits in } \mathfrak{s o}_{m}\right\} & \rightarrow \mathscr{P}_{1}(m) \\
\mathscr{O}_{X_{\left[d_{1}, \ldots, d_{m}\right]}} & \mapsto\left[d_{1}, \ldots, d_{m}\right]
\end{aligned}
$$

Lemma 2.10 (Wall). The maps $\Pi_{ \pm 1}$ are bijections.
Proof. We will treat the case $\mathfrak{g}=\mathfrak{s p}_{2 m}$, the case $\mathfrak{g}=\mathfrak{s o}_{m}$ is similar. To prove surjectivity, let $\mathbf{d}=\left[d_{1}^{i_{1}}, \ldots, d_{r}^{i_{r}}\right] \in \mathscr{P}_{-1}(2 n)$ and define a vector space

$$
V=\bigoplus_{j=1}^{r} V_{j}
$$

where $\operatorname{dim} V_{j}=i_{j}$. We want to define a form $(\cdot, \cdot): V \times V \rightarrow \mathbb{C}$ on V as follows: $\left(V_{i}, V_{j}\right)=0$ if $i \neq j$. Moreover, if d_{j} is odd (resp. even), we require $\left.(\cdot, \cdot)\right|_{V_{j} \times V_{j}}$ to be non-degenerate and symplectic (resp. symmetric). Note that such a form exists, and is unique up to equivalence. Now for $d_{j} \neq 1$, replace the summands V_{j} by $W_{j} \oplus W_{j}^{\prime}$, where W_{j}, W_{j}^{\prime} are isomorphic copies of V_{j}. Now V is a subspace of the larger vector space

$$
\bigoplus_{j=1, d_{j} \neq 1}^{r} W_{j} \oplus W_{j}^{\prime} \oplus \bigoplus_{j=1, d_{j}=1}^{r} V_{j}
$$

For $d_{j} \neq 1$, replace (\cdot, \cdot) on V_{j} by a symplectic form $\langle\cdot, \cdot\rangle_{j}$ on $W_{j} \oplus W_{j}^{\prime}$ such that W_{j} is paired non-degenerately with W_{j}^{\prime} and each of W_{j} and W_{j}^{\prime} is self orthogonal. Again up to equivalence, there is a unique way to do this. Consider now a symplectic form $\langle\cdot, \cdot\rangle^{\prime}$ on $W=\bigoplus_{j} W_{j} \oplus W_{j}^{\prime}$, which is just the orthogonal sum of the $\langle\cdot, \cdot\rangle_{j}$. Using the formulas in Lemma 7.2.1 in [Hum72] for the action of the standard basis vectors of $\mathfrak{s l}_{2}$ on a finite-dimensional irreducible module, we enlarge each $W_{j} \oplus W_{j}^{\prime}$ to a $d_{j} i_{j}$ dimensional $\mathfrak{s l}_{2}$-module, whose highest weight space is W_{j} and whose lowest weight space is W_{j}^{\prime}. This module is the direct sum of i_{j} irreducible submodules, each of highest weight $d_{j}-1$. It admits a non-degenerate symplectic form extending $\langle\cdot, \cdot\rangle_{j}$
and invariant under the $\mathfrak{s l}_{2}$-action. By Schur's Lemma, this form is unique up to $\mathfrak{s l}_{2}-$ equivariant equivalence. If $d_{k}=1$, then V_{k} may be regarded as a trivial $\mathfrak{s I}_{2}$-module with a non-degenerate symplectic form $\langle\cdot, \cdot\rangle$. Now, denote by V^{\prime} the direct sum of all these $\mathfrak{s l}_{2}$-modules with the inherited symplectic form. Then V^{\prime} is isomorphic to the standard representation $\mathbb{C}^{2 n}$. Clearly, $\mathfrak{s p}(V)$ has a nilpotent element with partition d. Hence, Π_{-1} is surjective. For injectivity, note that any two images of $\mathfrak{s l}_{2}$ in $\mathfrak{s p}_{2 n}$ giving rise to the same partition of $2 n$ must be conjugate under an isometry of the symplectic form.

Thus we get the following classification results.
Theorem 2.11 (Type $\left.B_{N}\right)$. There is a 1:1-correspondence

$$
\left\{\text { Nilpotent orbits in } \mathfrak{5 0}_{2 n+1}\right\} \longleftrightarrow \mathscr{P}_{1}(2 n+1)
$$

Theorem 2.12 (Type $\left.C_{N}\right)$. There is a 1:1-correspondence

$$
\left\{\text { Nilpotent orbits in } \mathfrak{s p}_{2 n}\right\} \longleftrightarrow \mathscr{P}_{-1}(2 n+1)
$$

Theorem 2.13 (Gerstenhaber). There is a 1:1-correspondence

$$
\left\{\text { Nilpotent } I(\langle\cdot, \cdot\rangle) \text {-orbits in } \mathfrak{g}_{\epsilon}\right\} \longleftrightarrow \mathscr{P}_{\epsilon}(m)
$$

Example 2.14.
\star In $\mathfrak{s i}_{7}$, there are seven nilpotent orbits, namely

$$
\mathscr{O}_{[7]}, \mathscr{O}_{\left[5,1^{2}\right]}, \mathscr{O}_{\left[3,1^{4}\right]}, \mathscr{O}_{\left[3,2^{2}\right]}, \mathscr{O}_{\left[3^{2}, 1\right]}, \mathscr{O}_{\left[2^{3}, 1^{3}\right]}, \mathscr{O}_{\left[1^{7}\right]}
$$

\star In $\mathfrak{s p}_{6}$, there are eight nilpotent orbits, namely

$$
\mathscr{O}_{[6]}, \mathscr{O}_{[4,2]}, \mathscr{O}_{\left[4,1^{2}\right]}, \mathscr{O}_{\left[3^{2}\right]}, \mathscr{O}_{\left[2^{3}\right]}, \mathscr{O}_{\left[2^{2}, 1^{2}\right]}, \mathscr{O}_{\left[2,1^{4}\right]}, \mathscr{O}_{\left[1^{6}\right]}
$$

However, we are not quite satisified yet; what about nilpotent orbits in $\mathfrak{5 0}_{2 n}$? We shall classify them now.

Theorem 2.15 (Type D_{n}, Springer-Steinberg). Nilpotent orbits in $\mathfrak{s o}_{2 n}$ are parametrized by partitions of $2 n$ in which even parts occur with even multiplicity, except that very even partitions d correspond to two orbits, denoted \mathscr{O}_{d}^{I} and $O_{d}^{I I}$.
The reason we can't prove this in the same fashion as for Type B_{n} and C_{n}, is that for $\mathfrak{g}=\mathfrak{s o}_{m}$ the adjoint group $G_{\text {ad }}$ is isomorphic to $P S O_{m}$, and while the $P S O_{m}$-orbits coincide with the $S O_{m}$-orbits, they do not coincide with the $I(\langle\cdot, \cdot\rangle) \cong O_{m}$-orbits if m is even.

Proof of Theorem 2.15. Let $m=2 n$ and, given two actions of $\mathfrak{s l}_{2}$ on \mathbb{C}^{m} invariant under $\langle\cdot, \cdot\rangle_{1}$, suppose they are conjugate under an element of $g \in I\left(\langle\cdot, \cdot\rangle_{1}\right)$. Suppose that the determinant of the matrix g is -1 ; then we must decide when we can replace g by a matrix of determinant 1 . Assume first, that at least one part of the partition \mathbf{d} corresponding to either action of $\mathfrak{s l}_{2}$ is odd. Then the proof of 2.10 shows that we can find an irreducible odd-dimensional summand of \mathbb{C}^{m} under the first action that pairs non-degenerately with itself under $\langle\cdot, \cdot\rangle_{1}$. Multiplying g by -1 on this summand S and leaving it unchanged on the orthogonal complement of S, we obtain a new g that also conjugates the first action to second but has determinant 1 . Hence, the two actions are already conjugate under $S O_{m}$ or PSO_{m}. Now assume that all parts of \mathbf{d} are even, so they all occur with even multiplicity. Then again, the proof of 2.10 shows that the commutant in O_{m} of either $\mathfrak{s l}_{2}$-action is the direct product of symplectic groups, one for each distinct part of \mathbf{d}. Since a symplectic transformation automatically has
determinant 1 , it is impossible to replace g by any g of determinant 1 . Hence, very even partitions of m correspond to two orbits: Given a representative of one of them, one obtains a representative of the other by conjugating by an orthogonal matrix of determinant -1 . Other partitions of m correspond to one orbit.

3. Topology of Nilpotent Orbits

3.1. The Closure Ordering. Recall the partial ordering on the set of nilpotent orbits, given by the Zariski closure operation: For a nilpotent element $X \in \mathfrak{g}$, we set

$$
\mathscr{O}_{X} \leq \mathscr{O}_{X^{\prime}}: \Longleftrightarrow \overline{\mathscr{O}_{X}} \subset \overline{\mathscr{O}_{X^{\prime}}}
$$

where $\overline{\mathscr{O}_{X}}$ is the Zariski-closure of \mathscr{O}_{X}. In this section, we want to build a bridge to the previous partition-type classifications of nilpotent orbits in the classical Lie algebras.
Definition 3.1 (Partial order on $\mathscr{P}(N))$. Given $f=\left[f_{1}, \ldots, f_{N}\right], \boldsymbol{d}=\left[d_{1}, \ldots, d_{N}\right] \in$ $\mathscr{P}(N)$, we say that d dominates f, denoted by $d \geq f$, if

$$
\sum_{1 \leq j \leq k} d_{j} \geq \sum_{1 \leq j \leq k} f_{j} \text { for all } k \leq N
$$

We say that \boldsymbol{d} covers \boldsymbol{f}, if $\boldsymbol{d}>\boldsymbol{f}$ and there is no partition \boldsymbol{e} such that $\boldsymbol{d}>\boldsymbol{e}>\boldsymbol{f}$.
This partial order is usually referd to as the dominance order.
Example 3.2. Let $N=6$. We can visualize $(\mathscr{P}(6), \geq)$ as follows:

Lemma 3.3. Let $\mathscr{O}_{\boldsymbol{d}}$ and \mathscr{O}_{f} be nilpotent orbits in $\mathfrak{s l}_{n}$ corresponding to \boldsymbol{d} and f and let $X \in \mathscr{O}_{\boldsymbol{d}}, Y \in \mathscr{O}_{f}$. Then $\boldsymbol{d} \geq f$ if and only if $\operatorname{rank}\left(X^{k}\right) \geq \operatorname{rank}\left(Y^{k}\right)$ for all $k \geq 0$.

Proof. It can be computed, that

$$
\operatorname{rank}\left(X^{k}\right)=\sum_{\left\{i \mid d_{i} \geq k\right\}}\left(d_{i}-k\right)
$$

Suppose that $\mathbf{d} \nsupseteq \mathbf{f}$ and let j be the smallest integer with

$$
\sum_{i=1}^{j} d_{i}<\sum_{i=1}^{j} f_{i}
$$

Clearly, $d_{j}<f_{j}$. No term d_{i} with $i>j$ contributes to $\operatorname{rank}\left(X^{d_{j}}\right)$, so $\operatorname{rank}\left(X^{d_{j}}\right)<$ $\operatorname{rank}\left(Y^{d_{j}}\right)$. Conversely, suppose that $\operatorname{rank}\left(X^{k}\right)<\operatorname{rank}\left(Y^{k}\right)$ for some k and let m be the largest index with $f_{m} \geq k$. Then

$$
\operatorname{rank}\left(Y^{k}\right)=\sum_{i=1}^{m}\left(f_{i}-k\right)
$$

while

$$
\sum_{i=1}^{m}\left(d_{i}-k\right) \leq \operatorname{rank}\left(X^{k}\right)
$$

Hence

$$
\sum_{i=1}^{m} d_{i}<\sum_{i=1}^{m} f_{i}
$$

so that $\mathbf{d} \nexists \mathbf{f}$.
Lemma 3.4 (Gerstenhaber). Let $\boldsymbol{d}, \boldsymbol{f} \in \mathscr{P}(N)$ with $\boldsymbol{d}=\left[d_{1}, \ldots, d_{N}\right]$. Then \boldsymbol{d} covers \boldsymbol{f} if and only if f can be obtained from d by the following procedure: Choose an index i and let j be the smallest index greater than i such that $0 \leq d_{j}<d_{i}-1$. Assume that either $d_{j}=d_{i}-2$ or $d_{k}=d_{i}$ whenever $i<k<j$. Then the parts of f are obtained by from the d_{k} by replacing d_{i}, d_{j} by $d_{i}-1, d_{j}+1$.
Proof. See Lemma 6.2.4 in [CM93].
Theorem 3.5 (Gerstenhaber, Hesselink). Let \mathfrak{g} be a classical Lie algebra, and let d, f be partitions of two nilpotent orbits $\mathscr{O}_{d}, \mathscr{O}_{f}$ in \mathfrak{g}. Then $\mathscr{O}_{\boldsymbol{d}}>\mathscr{O}_{f}$ if and only if $d>f$.

Proof. Let $X \in \mathscr{O}_{\mathbf{d}}, Y \in \mathscr{O}_{\mathbf{f}}$. Since the rank of any power of a matrix is invariant under conjugation, and since the condition that the rank of a matrix is a zariski-closed condition $($ because $\operatorname{cod}(\operatorname{rank}(-))=\mathbb{N}$, i.e. discrete), we can deduce

$$
\begin{aligned}
\mathscr{O}_{\mathbf{d}}>\mathscr{O}_{\mathbf{f}} & \Longrightarrow \operatorname{rank}\left(X^{k}\right)>\operatorname{rank}\left(Y^{k}\right) \text { for all } k \\
& \Longleftrightarrow \mathbf{~} .3>\mathbf{f}
\end{aligned}
$$

We will prove the converse for $\mathfrak{g}=\mathfrak{s l}_{n}$ case and refer the reader to [Hes76] for the more general case. Let $\mathbf{d}>\mathbf{f}$ and assume that without loss of generality, \mathbf{d} covers \mathbf{f}. Chose a standard triple in \mathfrak{g} with $X \in \mathscr{O}_{\mathbf{d}}$ as in 1 and define the subalgebra

$$
\mathfrak{q}_{2}=\sum_{i \geq 2} \mathfrak{g}_{i}
$$

where

$$
\mathfrak{g}_{i}=\left\{Z \in \mathfrak{g} \mid \operatorname{ad}_{H} Z=[H, Z]=i Z\right\}
$$

Using 1 , we can see that \mathscr{O}_{f} is represented by an element of q^{2}. By a Lemma of Kostant (Lemma 4.1.4 in [CM93]), the desired result follows.

Note that we wrote $>$ instead of \geq since for Type D, we have two orbits attached to a very even partition which are incomparable because they have the same dimension. But we still get:

Corollary 3.6. Let \mathfrak{g} be a Lie algebra of A, B or C. Let d, f be partitions of two nilpotent orbits $\mathscr{O}_{\boldsymbol{d}}, \mathscr{O}_{f}$ in \mathfrak{g}. Then $\mathscr{O}_{\boldsymbol{d}} \geq \mathscr{O}_{f}$, if and only if $\boldsymbol{d} \geq f$.
This tells us that the bijections established in 2.11 can be regarded as an isomorphism in a slightly more interesting category than Set, namely the category of posets. Moreover, (\mathscr{N}, \geq) and $\left(\mathscr{P}_{\mathfrak{g}}(N), \geq\right)^{1}$ are equivalent, regarded as poset category.

Example 3.7.
(1) Let $\mathfrak{g}=\mathfrak{s l}_{6}$. Then the diagram of nilpotent orbits in coincides with the diagram given above.
(2) Let $\mathfrak{g}=\mathfrak{s p}_{6}$. We can visualize (\mathscr{N}, \geq) as follows:

For more diagrams in the classical, as well as the exceptional case, see Chapter 4 in [Spa82].
3.2. The Fundamental Group and $\mathscr{A}(\mathscr{O})$. The goal of this section is to study the fundamental group of a given nilpotent orbit \mathscr{O}_{X} in \mathfrak{g}. It turns out that its useful to study the universal cover $\tilde{\mathscr{O}}_{X}$ of \mathscr{O}_{X}. Recall that the universal covering $p: G_{\text {sc }} \rightarrow G_{\text {ad }}$ has a natural complex Lie group structure (c.f. Prop. 7.9 in [FH91]). In particular, p is a homomorphism of Lie groups whose kernel is precisely the center Z of $G_{s c}$. Recall the following definition:

Definition 3.8 (Homogeneous Space). Let \mathscr{C} be a locally small category which admits a functor $U: \mathscr{C} \rightarrow$ Set, X an object of \mathscr{C} and G a group. Given a group homomorphism

$$
\begin{aligned}
\eta: G & \rightarrow \operatorname{Aut}_{\mathscr{C}}(X) \\
g & \mapsto \eta_{g}
\end{aligned}
$$

the triple (X, η, U) is called a homogeneous space for G, if G acts transitively, i.e. the map

$$
\begin{aligned}
G \times U(X) & \rightarrow U(X) \times U(X) \\
(g, x) & \mapsto\left(x, \eta_{g}(x)\right)
\end{aligned}
$$

is surjective.

[^0]Before computing the fundamental group of \mathscr{O}_{X}, we shall explain how to get an action of $G_{s c}$ on $\tilde{\mathscr{O}}_{X}$: Recall that for a path-connected, locally path-connected, locally relatively simply connected pointed space (X, x_{0}), the (up to isomorphism) unique simply connected covering space is given by

$$
\tilde{X}=\left\{[f] \operatorname{rel} \partial I \mid f \text { is a path in } X \text { with } f(0)=x_{0}\right\}
$$

topologized in the usual fashion (c.f. Thm. 8.4 in [Bre93]). Now let

$$
\begin{aligned}
G \times X & \rightarrow X \\
(g, x) & \mapsto g \cdot x
\end{aligned}
$$

be an action of a Lie group on a space X. Since the universal covering $p: \tilde{G} \rightarrow G$ is a surjective homomorphism, composition yields a lift of the action of G to an action of \tilde{G}

We are now in the position to lift the action of \tilde{G} on X to an action on \tilde{X}. We define

$$
\tilde{G} \times \tilde{X} \rightarrow \tilde{X},(g, \gamma) \mapsto(\omega: t \mapsto g(t) \cdot \gamma(t))
$$

and get a well-defined group action. Obviously, the following diagram commutes:

We will now return to the usual setting where \mathfrak{g} is a classical Lie algebra and \mathscr{O}_{X} a nilpotent orbit in \mathfrak{g}.

Lemma 3.9. (1) $\tilde{\mathscr{O}}_{X} \cong G_{s c} /\left(G_{s c}^{X}\right)^{\circ}$. Moreover, $\tilde{\mathscr{O}}_{X}$ is a homogeneous $G_{s c}$-space.
(2) The group $\pi_{1}\left(\mathscr{O}_{X}\right)$ is isomorphic to the component group $G_{s c}^{X} /\left(G_{s c}^{X}\right)^{\circ}$ of the centralizer of X in $G_{s c}$.

Proof. (1) By simple connectedness of $G_{s c}$, the action is transitive, proving the first claim. Let $X^{\prime} \in F:=p^{-1}(\{X\})$ where $p: \tilde{\mathscr{O}}_{X} \rightarrow \mathscr{O}_{X}$ is the covering map. Consider an element $Y \in\left(G_{\mathrm{sc}}^{X}\right)^{\circ}$. Then

$$
\begin{aligned}
p\left(Y \cdot X^{\prime}\right) & =Y \cdot p\left(X^{\prime}\right) \\
& =Y \cdot X \\
& =X
\end{aligned}
$$

Thus, the $\left(G_{\mathrm{sc}}^{X}\right)^{\circ}$-Orbit of X^{\prime} is a connected subspace of F, hence equal to $\left\{X^{\prime}\right\}$ by discreteness of the fiber. We have $\left(G_{\mathrm{sc}}^{X}\right)^{\circ} \subset \operatorname{stab}_{X^{\prime}}\left(G_{\mathrm{sc}}\right)$ and get a covering

$$
G_{\mathrm{sc}} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ} \rightarrow \tilde{\mathscr{O}_{X}}
$$

On the other hand, we have a covering

which must in turn be covered by $\tilde{\mathscr{O}}_{X}$, yielding an isomorphism of coverings

(2) Since $\left(G_{\mathrm{sc}}^{X}\right)^{\circ}$ acts trivially on the fiber, we get

$$
\begin{aligned}
\operatorname{Deck}\left(\tilde{O}_{X}\right) & \stackrel{(1)}{=} \operatorname{Deck}\left(G_{\mathrm{sc}} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ}\right) \\
& =G_{\mathrm{sc}}^{X} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\pi_{1}\left(\mathscr{O}_{X}\right) & =\operatorname{Deck}\left(\tilde{\mathscr{O}}_{X}\right) \\
& =G_{\mathrm{sc}}^{X} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ}
\end{aligned}
$$

Definition 3.10 (G-equivariant Fundamental Group). Let G be a complex Lie group with Lie algebra \mathfrak{g} and \mathscr{O}_{X} a nilpotent orbit. The group

$$
\pi_{1}^{G}\left(\mathscr{O}_{X}\right):=G^{X} /\left(G^{X}\right)^{\circ}
$$

is called the G-equivariant fundament group of \mathscr{O}_{X}.
Note that $\pi_{1}^{G}\left(\mathscr{O}_{X}\right)$ is the Deck transformation group of the largest covering space with a G-action. By 3.9, we have

$$
\pi_{1}^{G_{\mathrm{sc}}}\left(\mathscr{O}_{X}\right)=G_{\mathrm{sc}}^{X} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ} \cong \pi_{1}\left(\mathscr{O}_{X}\right)
$$

We write $\mathscr{A}\left(\mathscr{O}_{X}\right)=\pi_{1}^{G_{\text {ad }}}\left(\mathscr{O}_{X}\right)$. Recall that, given a nilpotent element $X \in \mathfrak{g}$, we can construct a standard triple $\{H, X, Y\}$ using Jacobson-Morozov and get a unique homomorphism

$$
\phi: \mathfrak{s l}_{2} \rightarrow \mathfrak{g}
$$

which is determined by the standard triple. We set

$$
\mathfrak{g}^{\phi}:=\{Z \in \mathfrak{g} \mid[Z, V]=0 \text { for all } V \in \mathfrak{a}\}
$$

where $\mathfrak{a}=\mathbb{C}\langle H, X, Y\rangle$. Similarly, let $G_{\text {ad }}^{\phi}$ denote the centralizer of \mathfrak{a} in $G_{\text {ad }}$. By 3.7.5 in [CM93], we have

$$
G^{X} /\left(G^{X}\right)^{\circ}=G^{\phi} /\left(G^{\phi}\right)^{\circ}
$$

Thus, we are reduced to studying the centralizier of $\operatorname{im}(\phi)$ in G. Assume now, that \mathfrak{g} is classical.

Example 3.11.
\star If $\mathfrak{g}=\mathfrak{s l}_{n}$, then $G_{\mathrm{sc}}=S L_{n}$.
\star If $\mathfrak{g}=\mathfrak{s p}_{2 n}$, then $G_{\mathrm{SC}}=S p_{2 n}$.
\star If $\mathfrak{g}=\mathfrak{s o}_{N}$, then $G_{s c}$ is a double cover for $S O_{N}$, denoted Spin_{N}.

Notation.

\star If H is any group, let $H_{\Delta}^{n}=\iota(H)$ denote the diagonal copy of H inside $\prod_{i=1}^{n} H$.
\star If H_{1}, \ldots, H_{n} are matrix groups, let $S\left(\prod_{i=1}^{n} H_{i}\right)$ denote the subgroup of $\prod_{i=1}^{n} H_{i}$ consisting of m-tuples of matrices with determinant 1 .

Remark 3.12. $S(H \times K \times \ldots)$ is not necessarily isomorphic to $S\left(H_{\Delta}^{n} \times K_{\Delta}^{m} \times \ldots\right)$, although $H_{\Delta}^{n} \cong H$. For example if $H=G L_{n}$, we have $S(H)=S L_{n}$ but

$$
S\left(H_{\Delta}^{2}\right)=S L_{n}^{ \pm}=\left\{X \in G L_{n} \mid \operatorname{det}(X)= \pm 1\right\}
$$

Theorem 3.13 (Springer-Steinberg). Let \mathfrak{g} be a classical Lie algebra and \mathscr{O}_{X} a nilpotent orbit in \mathfrak{g}. Write $\mathscr{O}_{X}=\mathscr{O}_{\left[d_{1}, \ldots, d_{N}\right]}$ for some $\boldsymbol{d}=\left[d_{1}, \ldots, d_{N}\right] \in \mathscr{P}(N)$. Let $r_{i}=\#\left\{j \mid d_{j}=i\right\}$ be the multiplicities and $s_{i}=\#\left\{j \mid d_{j} \geq i\right\}$. Then

$$
\begin{aligned}
& G_{s c}^{\phi} \cong \begin{cases}S\left(\prod_{i}\left(G L_{r_{i}}\right)_{\Delta}^{i}\right) & \mathfrak{g}=\mathfrak{s l}_{n} \\
\prod_{i \text { odd }}\left(S p_{r_{i}}\right)_{\Delta}^{i} \times \prod_{i \text { even }}\left(O_{r_{i}}\right)_{\Delta}^{i} & \mathfrak{g}=\mathfrak{s p}_{2 n} \\
\text { double cover of } C:=S\left(\prod_{i \text { even }}\left(S p_{r_{i}}\right)_{\Delta}^{i} \times \prod_{i \text { odd }}\left(O_{r_{i}}\right)_{\Delta}^{i}\right) & \mathfrak{g}=\mathfrak{s o}_{N}\end{cases} \\
& G_{\mathrm{ad}}^{\phi} \cong \begin{cases}S\left(\prod_{i}\left(G L_{r_{i}}\right)_{\Delta}^{i}\right) /\left\{\text { scalar matrices in } S L_{n}\right\} & \mathfrak{g}=\mathfrak{s l}_{n} \\
G_{s c}^{\phi} /\{ \pm I\} & \mathfrak{g}=\mathfrak{s p}_{2 n} \\
C & \mathfrak{g}=\mathfrak{s o}_{2 n+1} \\
C /\{ \pm I\} & \mathfrak{g}=\mathfrak{s o}_{2 n} .\end{cases}
\end{aligned}
$$

In addition, the dimension of \mathfrak{g}^{X} is given by

$$
\operatorname{dim}\left(\mathfrak{g}^{X}\right)= \begin{cases}\sum_{i} s_{i}^{2}-1 & \mathfrak{g}=\mathfrak{s l}_{n} \\ \frac{1}{2} \sum_{i} s_{i}^{2}+\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s p}_{2 n} \\ \frac{1}{2} \sum_{i} s_{i}^{2}-\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s o}_{N} .\end{cases}
$$

Proof. Theorem 6.1.3 in [CM93].
The dimension formula

$$
\operatorname{dim}\left(\mathscr{O}_{X}\right)=\operatorname{dim}(\mathfrak{g})-\operatorname{dim}\left(\mathfrak{g}^{X}\right)
$$

from 1.2.15 in [CM93] yields

Corollary 3.14.

$$
\operatorname{dim}\left(\mathscr{O}_{X}\right)= \begin{cases}n^{2}-\sum_{i} s_{i}^{2} & \mathfrak{g}=\mathfrak{s l}_{n} \\ 2 n^{2}+n-\frac{1}{2} \sum_{i} s_{i}^{2}+\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s o}_{2 n+1} \\ 2 n^{2}+n-\frac{1}{2} \sum_{i} s_{i}^{2}-\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s p}_{2 n} \\ 2 n^{2}-n-\frac{1}{2} \sum_{i} s_{i}^{2}+\frac{1}{2} \sum_{i \text { odd }} r_{i} & \mathfrak{g}=\mathfrak{s 0}_{2 n}\end{cases}
$$

Example 3.15.
(1) Let $\mathfrak{g}=\mathfrak{s I}_{6}$ and $\mathscr{O}=\mathscr{O}_{\left[2^{3}\right]}$. Then

$$
\begin{array}{ll}
r_{1}=0 & s_{1}=3 \\
r_{2}=3 & s_{2}=3 \\
r_{3}=0 & s_{3}=0
\end{array}
$$

so by 3.13 , we have

$$
G_{\mathrm{sc}}^{\phi} \cong S\left(\left(G L_{3}\right)_{\Delta}^{2}\right) \cong S L_{3}^{ \pm}
$$

This group has two connected components, though $G_{\mathrm{ad}}^{\phi} \cong S L_{3}$ is connected. It follows that

$$
\begin{aligned}
\pi_{1}(\mathscr{O}) & \stackrel{3.9}{\cong} G_{\mathrm{sc}}^{X} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ} \\
& \cong G_{\mathrm{sc}}^{\phi} /\left(G_{\mathrm{sc}}^{\phi}\right)^{\circ} \\
& \cong S L_{3}^{ \pm} / S L_{3} \\
& \cong \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

and

$$
\mathscr{A}(\mathscr{O}) \cong\{1\}
$$

Let $X \in \mathscr{O}$, then the dimension of \mathscr{O} is given by

$$
\begin{aligned}
& \operatorname{dim}(\mathscr{O})=\operatorname{dim}(\mathfrak{g})-\operatorname{dim}\left(\mathfrak{g}^{X}\right) \\
& \begin{array}{l}
3.13 \\
= \\
= \\
\\
\end{array} \\
&=18
\end{aligned}
$$

(2) Let $\mathfrak{g}=\mathfrak{s l}_{10}, \mathscr{O}=\mathscr{O}_{[7,3]}$. Then $r_{3}=r_{7}=1$ and $r_{i}=0$ for all $i \neq 3,7$. Now

$$
G_{\mathrm{sc}}^{\phi} \cong S\left(G L_{1} \times G L_{1}\right) \cong G L_{1} \cong \mathbb{C}^{\times} \cong G_{\mathrm{ad}}^{\phi}
$$

which is connected. Thus

$$
\pi_{1}(\mathscr{O})=\mathscr{A}(\mathscr{O})=\{1\}
$$

(3) Let $\mathfrak{g}=\mathfrak{s p}_{12}$ and consider the orbit $\mathscr{O}=\mathscr{O}_{\left[4^{2}, 2^{2}\right]}$. Now $r_{2}=r_{4}=2$ while $r_{1}=r_{3}=0$. We have

$$
G_{\mathrm{sc}}^{\phi} \cong\left(O_{2}\right)_{\Delta}^{4} \times\left(O_{2}\right)_{\Delta}^{2}
$$

and

$$
G_{\mathrm{ad}}^{\phi} \cong G_{\mathrm{sc}}^{\phi} /\{ \pm I\}
$$

so

$$
\pi_{1}(\mathscr{O}) \cong \mathscr{A}(\mathscr{O}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

For $X \in \mathscr{O}$, we have $\operatorname{dim}\left(\mathfrak{g}^{X}\right)=20$, hence $\operatorname{dim}(\mathscr{O})=58$.
(4) Let $\mathfrak{g}=\mathfrak{w n}_{12}, \mathscr{O}=\mathscr{O}_{3^{2}, 2^{2}, 1^{2}}$. Then 3.13 tells us, that G_{sc}^{ϕ} is a double cover of $S\left(\left(\mathrm{O}_{2}\right)_{\Delta}^{3} \times\left(\mathrm{Sp}_{2}\right)_{\Delta}^{2} \times \mathrm{O}_{2}\right)$ which can also be regarded as an index 2 subgroup of $\operatorname{Pin}_{2} \times S p_{2} \times O_{2}$, where Pin_{n} is a double cover of O_{n} corresponding to the double cover Spin_{n} of $S O_{n}$. We have $G_{\mathrm{ad}}^{\phi}=G_{\mathrm{sc}}^{\phi} /\{ \pm I\}$ and

$$
\pi_{1}(\mathscr{O})=\mathscr{A}(\mathscr{O})=\mathbb{Z} / 2 \mathbb{Z} .
$$

Next, we want give formulae for $\pi_{1}(\mathscr{O})$ and $\mathscr{A}(\mathscr{O})$ of any nilpotent orbit $\mathscr{O}=\mathscr{O}_{\left[d_{1}, \ldots, d_{N}\right]}$ in a classical Lie algebra \mathfrak{g}.
Notation. We set

$$
\begin{aligned}
& a=\text { number of distinct odd } d_{i} \\
& b=\text { number of distinct even nonzero } d_{i} \\
& c=\operatorname{gcd}\left(d_{1}, \ldots, d_{N}\right)
\end{aligned}
$$

Definition 3.16.

\star A group E is called a central extension of a group H by a group K, if there exists a short exact sequence

$$
1 \rightarrow K \rightarrow E \rightarrow H \rightarrow 1
$$

such that K is a central subgroup of E.
\star A partition is called rather odd, if all of its odd parts have multiplicity one.
Remark 3.17. $\pi_{1}\left(G_{\mathrm{ad}}, 1\right)$ lies in the center of G_{sc}, and the sequence

$$
1 \rightarrow \pi_{1}\left(G_{\mathrm{ad}}, 1\right) \rightarrow G_{\mathrm{sc}} \rightarrow G \rightarrow 1
$$

is exact. Consequently, $G_{\text {sc }}$ is a central extension of $G_{\text {ad }}$ by $\pi_{1}\left(G_{a d}, 1\right)$. Actually, this holds for a general Lie group (See 2.5 in [Jam08]).
Corollary 3.18 (Classical Equivariant Fundamental Groups). For a nilpotent orbit in a classical Lie algebra, $\pi_{1}(\mathscr{O})$ and $\mathscr{A}(\mathscr{O})$ are given in the following table.

Algebra	$\pi_{1}\left(\mathscr{O}_{\mathbf{d}}\right)$	$\mathscr{A}(\mathscr{O})$
$\mathfrak{S I}_{n}$	$\mathbb{Z} / c \mathbb{Z}$	$\{1\}$
$\mathfrak{S o}_{2 n+1}$	If dis rather odd, a central exten- sion by $\mathbb{Z} / 2 \mathbb{Z}$ of $(\mathbb{Z} / 2 \mathbb{Z})^{a-1} ;$ other wise, $(\mathbb{Z} / 2 \mathbb{Z})^{a-1}$	$(\mathbb{Z} / 2 \mathbb{Z})^{a-1}$
$\mathfrak{S p}_{2 n}$	$(\mathbb{Z} / 2 \mathbb{Z})^{b}$	$(\mathbb{Z} / 2 \mathbb{Z})^{b}$ if all even parts have even multiplicity; otherwise $(\mathbb{Z} / 2 \mathbb{Z})^{b-1}$
$\mathfrak{S o}_{2 n}$	If dis rather odd, a central exten- sion by $\mathbb{Z} / 2 \mathbb{Z}$ of $(\mathbb{Z} / 2 \mathbb{Z})^{\max \{0, a-1\}} ;$ otherwise $(\mathbb{Z} / 2 \mathbb{Z})^{\max \{0, a-1\}}$	$(\mathbb{Z} / 2 \mathbb{Z})^{\max \{0, a-1\}}$ if all odd parts have even multiplicity; other- wise $(\mathbb{Z} / 2 \mathbb{Z})^{\max \{0, a-2\}}$

Corollary 3.19. Let \mathfrak{g} be a semisimple Lie algebra of classical type and \mathscr{O} a nilpotent orbit. Then $\mathscr{A}(\mathscr{O})$ is either trivial or a finite product of $\mathbb{Z} / 2 \mathbb{Z}$. In particular, it is always abelian.
Proposition 3.20. Let \mathscr{O}_{X} be the adjoint orbit through any $X \in \mathfrak{g}$. Let $X=X_{s}+X_{n}$ be the Jordan decomposition of X. Then $\pi_{1}\left(\mathscr{O}_{X}\right)$ is isomorphic to the $G_{s c}^{X_{s}}$-equivariant fundamental group $\pi_{1}^{G_{s c}^{X_{s}}}\left(G_{s c}^{X_{s}} \cdot X_{n}\right)$ through X_{n}. In particular, every semisimple orbit in \mathfrak{g} is simply connected.

Proof. By the uniqueness of the Jordan decomposition and 3.9, we have

$$
\begin{aligned}
\pi_{1}\left(\mathscr{O}_{X}\right) & =G_{\mathrm{sc}}^{X} /\left(G_{\mathrm{sc}}^{X}\right)^{\circ} \\
& =\left(G_{\mathrm{sc}}^{X_{s}}\right)^{X_{n}} /\left(\left(G_{\mathrm{sc}}^{X_{s}}\right)^{X_{n}}\right)^{\circ} \\
& =\pi_{1}^{G_{\mathrm{sc}}^{\mathrm{s}_{\mathrm{s}}}}\left(G_{\mathrm{sc}}^{X_{s}} \cdot X_{n}\right)
\end{aligned}
$$

which proves the first statement. For the second assertion, see 2.3.3 in [CM93].

4. Explicit Standard Triples

Our next goal is to construct explicit standard triples in some classical Lie algebras. The main strategy is like this: Given a classical Lie algebra \mathfrak{g}, fix a choice of Cartan subalgebra \mathfrak{h}, together with a standard coordinate system on \mathfrak{h}. We will then write down all roots and root spaces of \mathfrak{b} in \mathfrak{g} and also fix a choice of positive roots. Now, given a partition \mathbf{d}, which we saw corresponds to a nilpotent orbit, we construct a standard triple $\{H, X, Y\}$ such that $H \in \mathfrak{h}, X$ is a sum of vectors in certain positive root spaces and Y is a sum of certain vectors in negative root spaces. First, let's have a look at some

Root Space Decompositions.
\star Let $\mathfrak{g}=\mathfrak{s l} l_{n}$. Denote by \mathfrak{b} the set of diagonal matrices having trace zero. Recall the matrices $E_{i j}$ having 1 at the (i, j)-th entry and zeros elsewhere. Let $e_{i} \in \mathfrak{b}^{*}$ with

$$
e_{i}\left(\begin{array}{ccc}
h_{1} & & \\
& \ddots & \\
& & h_{n}
\end{array}\right)=h_{i}
$$

We get that

$$
(\operatorname{ad} H) E_{i j}=\left[H, E_{i j}\right]=\left(e_{i}(H)-e_{j}(H)\right) E_{i j}
$$

i.e. $E_{i j}$ is a simultaneous eigenvector for all ad (H), with eigenvalue $e_{i}(H)-$ $e_{j}(H)$. The $\left(e_{i}-e_{j}\right)$-root space is spanned by $E_{i j}$ and we get a decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{i \neq j} \mathbb{C} E_{i j}
$$

\star Let $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Remember that g may be realised as the following set of matrices:

$$
\left\{\left.\left(\begin{array}{cc}
Z_{1} & Z_{2} \\
Z_{3} & -Z_{1}^{t}
\end{array}\right) \right\rvert\, Z_{i} \in \mathbb{C}^{n \times n}, Z_{2}, Z_{3} \text { symmetric }\right\}
$$

Consider the Cartan subalgebra \mathfrak{h} consisting of matrices of the form

$$
H=\left(\begin{array}{llllll}
h_{1} & & & & & \\
& \ddots & & & & \\
& & h_{n} & & & \\
& & & -h_{1} & & \\
& & & & \ddots & \\
& & & & & -h_{n}
\end{array}\right)
$$

Let $e_{j} \in \mathfrak{h}^{*}$ be the linear functional taking a matrix H as above to its j-th entry. Then the root system of \mathfrak{g} is given by

$$
\Delta=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j\right\} \cup\left\{ \pm 2 e_{k}\right\}
$$

As positive roots, we chose

$$
\Phi=\left\{e_{i} \pm e_{j}, 2 e_{k} \mid i \neq j\right\}
$$

The root space decomposition is

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathbb{C} E_{\alpha}
$$

With E_{α} defined as below. Let $\alpha \in\left\{ \pm e_{i} \pm e_{j}, 2 e_{k}\right\}$. Then E_{α} is defined as one of the following matrices:

$$
\begin{array}{rlr}
E_{e_{i}-e_{j}} & =E_{i, j}-E_{j+n, i+n} & E_{2 e_{k}}=E_{k, k+n} \\
E_{e_{i}+e_{j}} & =E_{i, j+n}-E_{j, i+n} & E_{-2 e_{k}}=E_{k+n, k} \\
E_{-e_{i}-e_{j}} & =E_{i+n, j}+E_{j+n, i} &
\end{array}
$$

We will now proceed with the construction of standard triples for $\mathfrak{s l}_{n}$ and $\mathfrak{s p}_{2 n}$. Given a partition d, we will break up its parts into chunks, each consisting of one or two parts. We will attach a set of positive roots to each chunk in such a way, that
positive roots attached to distinct chunks are orthogonal. Our nilpotent element X corresponding to \mathbf{d} will be a sum of positive root vector, one for each chunk of \mathbf{d}.

Recipe 1 (Type A_{n}). Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $\mathbf{d} \in \mathscr{P}(n)$. The chunks of \mathbf{d} are just its parts, each repeated as often as its multiplicity. For each chunk $\left\{d_{i}\right\}$, choose a block of consecutive indices $\left\{N_{i}+1, \ldots, N_{i}+d_{i}\right\}$ in such a way that disjoint block are attached to distinct chunks. To every chunk $\left\{d_{i}\right\}$, attach the set of simple roots

$$
C^{+}=C^{+}\left(d_{i}\right)=\left\{e_{N_{i}+1}-e_{N_{i}+2}, \ldots, e_{N_{i}+d_{i}-1}-e_{N_{i}+d_{i}}\right\}
$$

Note that for $d_{i}=1, C^{+}$is empty. For every simple root α in $C:=\bigcup_{i} C^{+}\left(d_{i}\right)$, let X_{α} be an α-root vector and write $X=\sum_{\alpha \in C} X_{\alpha}$. By Lemma 3.2.6 in [CM93], there is $Y=\sum_{\alpha \in C} X_{-\alpha}$ and $H \in \mathfrak{h}$ such that $\{H, X, Y\}$ is a standard triple. We have

$$
H=\sum_{i} H_{C\left(d_{i}\right)}
$$

where

$$
H_{C\left(d_{i}\right)}=\sum_{l=1}^{d_{i}}\left(d_{i}-2 l+1\right) E_{N_{i}+l, N_{i}+l}
$$

Recipe 2 (Type C_{n}). Given $\mathbf{d} \in \mathscr{P}_{-1}(2 n)$, break it up into chunks of the following types: pairs $\{2 r+1,2 r+1\}$ of equal odd parts and single even parts $\{2 q\}$. Now attach sets of positive (but not necessarily simple) roots to each chunk C as follows. If $C=\{2 q\}$, choose a block $\{j+1, \ldots, j+q\}$ of consecutive indices and let

$$
C^{+}=C^{+}(2 q)=\left\{e_{j+1}-e_{j+2}, \ldots, e_{j+q-1}-e_{j+q}, 2 e_{j+q}\right\}
$$

If $C=\{2 r+1,2 r+1\}$, choose a block $\{l+1, l+2 r+1\}$ of consecutive indices and let

$$
C^{+}=C^{+}(2 r+1,2 r+1)=\left\{e_{l+1}-e_{l+1}, \ldots, e_{l+2 r}-e_{l+2 r+1}\right\}
$$

We further require that the blocks attached to distinct chunks be disjoint. However, this does not impose any restriction. For example, if $\mathfrak{g}=\mathfrak{s p}_{20}$ and $\mathbf{d}=\left[6,5^{2}, 2^{2}\right]$, then its chunks are $\{6\},\{5,5\},\{2\}$ and $\{2\}$ and we may take

$$
\begin{aligned}
C^{+}(6) & =\left\{e_{1}-e_{2}, e_{2}-e_{3}, 2 e_{3}\right\} \\
C^{+}(5,5) & =\left\{e_{4}-e_{5}, e_{5}-e_{6}, e_{6}-e_{7}, e_{7}-e_{8}\right\} \\
C^{+}(2) & =\left\{2 e_{9}\right\} \\
C^{+}(2) & =\left\{2 e_{10}\right\}
\end{aligned}
$$

Let $C=\bigcup_{i} C^{+}\left(d_{i}\right)$ and once again define $X=\sum_{\alpha \in C} X_{\alpha}$. Then there is a sum $Y=$ $\sum_{\alpha \in C} X_{-\alpha}$ and $H \in \mathfrak{h}$ such that $\{H, X, Y\}$ is a standard triple. We have

$$
H=\sum_{C} H_{C}
$$

where

$$
H_{C}=\sum_{l=1}^{q}(2 q-2 l+1)\left(E_{j+l, j+l}-E_{n+j+l, n+j+l}\right)
$$

if $C^{+}=\left\{e_{j+1}-e_{j+2}, \ldots, e_{j+q-1}-e_{j+q}, 2 e_{j+q}\right\}$ and

$$
H_{C}=\sum_{m=0}^{2 r}(2 r-2 m)\left(E_{l+1+m, l+1+m}-E_{n+l+1+m, n+l+1+m}\right)
$$

if $C^{+}=\left\{e_{l+1}-e_{l+2}, \ldots, e_{l+2 r}-e_{l+2 r+1}\right\}$

Proposition 4.1. If we view $\mathfrak{s p}_{2 n}$ as a subalgebra of $\mathfrak{S l}_{2 n}$, then the partition attached to the standard triple $\{H, X, Y\}$ is d.

Proof. See [CM93].

References

[Hum72] J.E. Humphreys. Introduction to Lie Algebras and Representation Theory. Graduate texts in mathematics. Springer, 1972. IsBN: 9780387900537. URL: https://books.google.de/books?id=TiUlAQAAIAAJ.
[Hes76] Wim Hesselink. "Singularities in the Nilpotent Scheme of a Classical Group". In: Transactions of the American Mathematical Society 222 (1976), pp. 1-32. IssN: 00029947. url: http://www. jstor. org/stable/1997656 (visited on $12 / 11 / 2023$).
[Spa82] N. Spaltenstein. Classes Unipotentes et Sous-groupes de Borel. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1982. isbn: 9783540115854. URL: https://books.google.de/books?id=l4vdRwAACAAJ.
[FH91] W. Fulton and J. Harris. Representation Theory: A First Course. Graduate texts in mathematics. Springer, 1991. ISBN: 9783540974956. URL: https: //books.google.de/books?id=jW6hngEACAAJ.
[Bre93] G.E. Bredon. Topology and Geometry. Graduate Texts in Mathematics. Springer, 1993. Isbn: 9780387979267. URL: https://books.google.de/books?id= G74V6UzL_PUC.
[CM93] D.H. Collingwood and W.M. McGovern. Nilpotent Orbits In Semisimple Lie Algebra: An Introduction. Mathematics series. Taylor \& Francis, 1993. ISBN: 9780534188344. url: https://books . google. de / books ? id= 9qdwgNmjLEMC.
[Jam08] Juan Pablo-Ortega James Montaldi. Notes on lifting group actions. MIMS EPrint, 2008.

[^0]: ${ }^{1} \mathscr{P}_{\mathfrak{g}}(N)$ denotes the set of partitions corresponding to \mathfrak{g} via 2.11.

