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Abstract. As observed in the 𝔰𝔩𝑛 case, nilpotent orbits are closely related to the set
P(𝑛) of partitions of 𝑛. This observation leads to the question if one can classify
nilpotent orbits for other Lie algebras in the same fashion. We will handle the clas-
sical case, giving a complete classification of nilpotent 𝐺ad-orbits in 𝔰𝔩𝑛 , 𝔰𝔭2𝑛 , 𝔰𝔬2𝑚+1
and 𝔰𝔬2𝑚 . Moreover, we will show that this correspondence also behaves nicely when
changing to a more interesting category than Set. Having studied the combinatorial
nature of nilpotent orbits, we will apply the results from the first section to give a for-
mula for the fundamental group 𝜋1(O𝑋 ), as well as the 𝐺ad-equivariant fundamental
group A (O𝑋 ) in the classical case. As an application, we will conclude by throwing
a quick glance at the construction of explicit standard triples for 𝔰𝔩𝑛 and 𝔰𝔭2𝑛 .
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1. Preliminaries

Definition 1.1 (Partition). A partition of a natural number 𝑛 is a tuple [𝑑1 , . . . , 𝑑𝑛] ∈ N𝑛
such that ∑

𝑖

𝑑𝑖 = 𝑛 and 𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑛

Two partitions [𝑑1 , . . . , 𝑑𝑛] and [𝑝1 , . . . , 𝑝𝑛] are said to be equal, if their nonzero parts agree.
The set of all partitions of 𝑛 is denoted P(𝑛).

Remark 1.2.
★ 𝑑𝑖 ≠ 0 for all 𝑖 ⇐⇒ 𝑑𝑖 = 1 for all 𝑖.
★ Occasionally, we will denote a partition [𝑑1 , . . . , 𝑑𝑛] simply by d.

1



2 LIVA DILER

Definition 1.3 (Exponential Notation). We write [𝑡 𝑖11 , . . . , 𝑡
𝑖𝑟
𝑟 ] to denote the partition

[𝑑1 , . . . , 𝑑𝑛], where

𝑑 𝑗 =


𝑡1 1 ≤ 𝑗 ≤ 𝑖1
𝑡2 𝑖1 + 1 ≤ 𝑗 ≤ 𝑖1 + 𝑖2
𝑡3 𝑖1 + 12 + 1 ≤ 𝑗 ≤ 𝑖1 + 𝑖2 + 𝑖3
...

...

Example 1.4. In exponential notation, we write

[4, 32 , 23 , 1, 010] = [4, 3, 3, 2, 2, 2, 1, 0, . . . , 0]
for the partition of 17.

Definition 1.5 (Very even partition). A partition [𝑑1 , . . . , 𝑑𝑛] of 𝑛 is called very even, if
for all 𝑖, 𝑑𝑖 is even and has even multiplicity.

2. Partition Type Classifications

Let 𝜖 = ±1 and consider a non-degenerate form ⟨·, ·⟩𝜖 on C𝑚 , such that
⟨𝐴, 𝐵⟩𝜖 = 𝜖⟨𝐵, 𝐴⟩𝜖 for all 𝐴, 𝐵 ∈ C𝑚 .

Remark 2.1.
★ If 𝜖 = −1, ⟨·, ·⟩𝜖 is symplectic.
★ If 𝜖 = 1, ⟨·, ·⟩𝜖 is symmetric.

Definition 2.2 (Isometry Group). Denote by
★ 𝐼(⟨·, ·⟩𝜖) = {𝑥 ∈ 𝐺𝐿𝑚(C) | ⟨𝑥𝐴, 𝑥𝐵⟩𝜖 = ⟨𝐴, 𝐵⟩𝜖 for all 𝐴, 𝐵 ∈ C𝑚} the isometry

group of ⟨·, ·⟩𝜖 on C𝑚 , and by
★ 𝔤𝜖 = {𝑋 ∈ 𝔰𝔩𝑚 | ⟨𝑋𝐴, 𝐵⟩𝜖 = −⟨𝐴, 𝑋𝐵⟩𝜖 for all 𝐴, 𝐵 ∈ C𝑚} its Lie algebra.

This definition is well defined: Since 𝐼(⟨·, ·⟩𝜖) is a closed subgroup of the Lie group
𝐺𝐿𝑚(C), it is itself a Lie group by Cartans closed-subgroup theorem. Thus, one can
speak of its Lie algebra.

Remark 2.3.
★ If 𝜖 = −1, 𝑚 = 2𝑛 must be even, so 𝐼(⟨·, ·⟩𝜖) = 𝑆𝑝2𝑛 .
★ If 𝜖 = 1, 𝐼(⟨·, ·⟩𝜖) � 𝑂𝑚 and 𝔤1 � 𝔰𝔬𝑚 .

If 𝜖 = −1, the adjoint group of 𝔤𝜖 is 𝑃𝑆𝑝2𝑛 := 𝑆𝑝2𝑛/{±𝐼} and its orbits coincide with
those of 𝑆𝑝2𝑛 . If 𝜖 = 1 and𝑚 is odd, then 𝐼(⟨·, ·⟩𝜖) = 𝑂𝑚 is the direct product its center
{±𝐼} with the adjoint group 𝑆𝑂𝑚 of 𝔤𝜖, so again, the orbits coincide. The problem
arises however, when 𝜖 = 1 and 𝑚 is even. Then the adjoint group of 𝔤𝜖 becomes
𝑃𝑆𝑂𝑚 := 𝑆𝑂𝑚/{±𝐼}, and its orbits do not coincide with those of 𝑂𝑚 . As we shall
later see, there can only be one 𝑂𝑚-orbit attached to a very even partition d ∈P(𝑚).
It turns out that this orbit is the union O 𝐼

d ∪ O 𝐼𝐼
d of two orbits corresponding to d.

Set
P𝜖(𝑚) = {[𝑑1 , . . . , 𝑑𝑛] ∈P(𝑚) : #{ 𝑗 | 𝑑 𝑗 = 𝑖} is even for all 𝑖 with (−1)𝑖 = 𝜖}

Let 𝔤 be a classical Lie algebra with standard representation on C𝑛 , i.e.
𝑋 · 𝑣 := 𝑋(𝑣) for all 𝑋 ∈ 𝔤, 𝑣 ∈ C𝑛

If𝑋 ∈ 𝔤 is nilpotent, then we can also regard𝑋 as a nilpotent element of 𝔰𝔩𝑛 . Then there
is a corresponding partition d = [𝑑1 , . . . , 𝑑𝑛] and moreover, belongs to a standard
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triple in 𝔰𝔩𝑛 . However, we can also attach to 𝑋 a standard triple {𝐻, 𝑋, 𝑌} ⊂ 𝔤, which
is conjugate under 𝐺𝐿𝑛 to the first triple. Denote by 𝔞 the span of {𝐻, 𝑋, 𝑌}.
Lemma 2.4. The nonzero 𝑑𝑖 are exactly the dimensions of the irreducible summands of the
standard representation C𝑛 , regarded as an 𝔞-module.

Our next goal is to establish a bĳective correspondence between nilpotent orbits in
𝔰𝔭2𝑛 , resp. 𝔰𝔬𝑚 , and certain partitions of 2𝑛, resp. 𝑚.
Let’s start with the case 𝔤 = 𝔰𝔭2𝑛 . Let ⟨·, ·⟩ be the non-degenerate symplectic form on
C2𝑛 which is preserved by 𝐺ad. We get an 𝔞-module decomposition

C2𝑛 =
⊕
𝑟≥0

𝑀(𝑟)

where 𝑀(𝑟) is a finite direct sum of irreducible 𝔞-modules (i.e. representations of
𝔰𝔩2) of highest weight 𝑟. By the above Lemma, we can read off the dimension of the
summands from the partition [𝑑1 , . . . , 𝑑𝑛] of 𝑋, regarded as a matrix in 𝔰𝔩2𝑛 . For
𝑟 ≥ 0, denote by 𝐻(𝑟) the highest weight space in 𝑀(𝑟). Note that

dim𝐻(𝑟) = mult(𝜌𝑟 , 𝑀(𝑟))
where 𝜌𝑟 denotes the irreducible 𝔞-module of highest weight. Now, to equip 𝐻(𝑟)
with a bilinear form, put

(𝑣, 𝑤)𝑟 := ⟨𝑣, 𝑌𝑟 · 𝑤⟩ for all 𝑣, 𝑤 ∈ 𝐻(𝑟)
Lemma 2.5. The form (·, ·)𝑟 is symplectic (resp. symmetric) if 𝑟 is even (resp. odd).

Proof. Using 𝔤-invariance, we get
(𝑣, 𝑤)𝑟 = ⟨𝑣, 𝑌𝑟 · 𝑤⟩

= ⟨𝑣, ad𝑟𝑌(𝑤)⟩
= ⟨[𝑣, 𝑌] · 𝑌𝑟−1 , 𝑤⟩
= ⟨[. . . [𝑣, 𝑌] . . . , 𝑌], 𝑤⟩

=

{
⟨𝑌𝑟 · 𝑣, 𝑤⟩ 𝑟 even
−⟨𝑌𝑟 · 𝑣, 𝑤⟩ 𝑟 odd

=

{
−(𝑤, 𝑣) 𝑟 odd
(𝑤, 𝑣) 𝑟 even

□

Lemma 2.6. The form (·, ·)𝑟 is non-degenerate for all 𝑟.

Proof. Note that the 𝑟-weight space of C2𝑛 is ⟨·, ·⟩-orthogonal to its 𝑠-weight space,
whenever 𝑠 ≠ −𝑟, by the invariance of ad𝐻 relative to ⟨·, ·⟩. Suppose 𝑟 ≥ 0. Then
𝐻(𝑟) has a canonical complement in the full 𝑟-weight space. It is spanned by all
vectors in this weight space lying in ⟨𝑌⟩. Since 𝑌𝑟+1 · 𝐻(𝑟) = 0, we see that 𝐻(𝑟) is
orthogonal to this complement with respect to (·, ·)𝑟 . By 𝔰𝔩2 theory, 𝑌𝑟 · 𝐻(𝑟) is the
lowest weight space in 𝑀(𝑟), and it pairs non-degenerately with 𝐻(𝑟) via ⟨·, ·⟩. Thus,
(·, ·)𝑟 is non-degenerate. □

Since the irreducible representation of highest weight 𝑟 has dimension 𝑟 +1 and non-
degenerate symplectic forms exist only in even dimension, we deduce the following
result.
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Corollary 2.7. The partition [𝑑1 , . . . , 𝑑𝑛] of 𝑋 lies in P−1(2𝑛), i.e. its odd parts occur with
even multiplicity.

Thus, we get a well-defined map

Π−1 : {nilpotent 𝐼(⟨·, ·⟩)-orbits in 𝔰𝔭2𝑛} →P−1(2𝑛)
O𝑋[𝑑1 ,...,𝑑2𝑛 ]

↦→ [𝑑1 , . . . , 𝑑2𝑛]

The case 𝔤 = 𝔰𝔬𝑚 is analogous. Again, let ⟨·, ·⟩ be the non-degenerate form on C𝑚
preserved by 𝐺ad. Denote by 𝔞 the span of a standard triple {𝐻, 𝑋, 𝑌}. Consider
again the decomposition

C𝑚 =
⊕
𝑟≥0

𝑀(𝑟)

and define 𝐻(𝑟) and (·, ·)𝑟 exactly as above.

Lemma 2.8. The form (·, ·)𝑟 is symmetric (resp. symplectic) if 𝑟 is even (resp. odd).

Corollary 2.9. The partition [𝑑1 , . . . , 𝑑𝑛] of 𝑋 lies in P1(𝑚), i.e. its odd parts occur with
even multiplicity.

Thus, we get a well-defined map

Π1 : {nilpotent 𝐼(⟨·, ·⟩)-orbits in 𝔰𝔬𝑚} →P1(𝑚)
O𝑋[𝑑1 ,...,𝑑𝑚 ]

↦→ [𝑑1 , . . . , 𝑑𝑚]

Lemma 2.10 (Wall). The maps Π±1 are bĳections.

Proof. We will treat the case 𝔤 = 𝔰𝔭2𝑚 , the case 𝔤 = 𝔰𝔬𝑚 is similar. To prove surjectivity,
let d = [𝑑𝑖11 , . . . , 𝑑

𝑖𝑟
𝑟 ] ∈P−1(2𝑛) and define a vector space

𝑉 =

𝑟⊕
𝑗=1

𝑉𝑗

where dim𝑉𝑗 = 𝑖 𝑗 . We want to define a form (·, ·) : 𝑉 × 𝑉 → C on 𝑉 as follows:
(𝑉𝑖 , 𝑉𝑗) = 0 if 𝑖 ≠ 𝑗. Moreover, if 𝑑 𝑗 is odd (resp. even), we require (·, ·)|𝑉𝑗×𝑉𝑗 to be
non-degenerate and symplectic (resp. symmetric). Note that such a form exists, and
is unique up to equivalence. Now for 𝑑 𝑗 ≠ 1, replace the summands 𝑉𝑗 by 𝑊𝑗 ⊕𝑊 ′𝑗 ,
where 𝑊𝑗 ,𝑊

′
𝑗

are isomorphic copies of 𝑉𝑗 . Now 𝑉 is a subspace of the larger vector
space

𝑟⊕
𝑗=1,𝑑𝑗≠1

𝑊𝑗 ⊕𝑊 ′𝑗 ⊕
𝑟⊕

𝑗=1,𝑑𝑗=1
𝑉𝑗

For 𝑑 𝑗 ≠ 1, replace (·, ·) on 𝑉𝑗 by a symplectic form ⟨·, ·⟩𝑗 on 𝑊𝑗 ⊕𝑊 ′𝑗 such that 𝑊𝑗 is
paired non-degenerately with 𝑊 ′

𝑗
and each of 𝑊𝑗 and 𝑊 ′

𝑗
is self orthogonal. Again

up to equivalence, there is a unique way to do this. Consider now a symplectic form
⟨·, ·⟩′ on 𝑊 =

⊕
𝑗𝑊𝑗 ⊕𝑊 ′𝑗 , which is just the orthogonal sum of the ⟨·, ·⟩𝑗 . Using the

formulas in Lemma 7.2.1 in [Hum72] for the action of the standard basis vectors of
𝔰𝔩2 on a finite-dimensional irreducible module, we enlarge each 𝑊𝑗 ⊕𝑊 ′𝑗 to a 𝑑 𝑗 𝑖 𝑗-
dimensional 𝔰𝔩2-module, whose highest weight space is𝑊𝑗 and whose lowest weight
space is 𝑊 ′

𝑗
. This module is the direct sum of 𝑖 𝑗 irreducible submodules, each of

highest weight 𝑑 𝑗 − 1. It admits a non-degenerate symplectic form extending ⟨·, ·⟩𝑗
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and invariant under the 𝔰𝔩2-action. By Schur’s Lemma, this form is unique up to 𝔰𝔩2-
equivariant equivalence. If 𝑑𝑘 = 1, then 𝑉𝑘 may be regarded as a trivial 𝔰𝔩2-module
with a non-degenerate symplectic form ⟨·, ·⟩. Now, denote by𝑉′ the direct sum of all
these 𝔰𝔩2-modules with the inherited symplectic form. Then 𝑉′ is isomorphic to the
standard representation C2𝑛 . Clearly, 𝔰𝔭(𝑉) has a nilpotent element with partition
d. Hence, Π−1 is surjective. For injectivity, note that any two images of 𝔰𝔩2 in 𝔰𝔭2𝑛
giving rise to the same partition of 2𝑛 must be conjugate under an isometry of the
symplectic form. □

Thus we get the following classification results.

Theorem 2.11 (Type 𝐵𝑁 ). There is a 1 : 1-correspondence
{Nilpotent orbits in 𝔰𝔬2𝑛+1} ←→P1(2𝑛 + 1)

Theorem 2.12 (Type 𝐶𝑁 ). There is a 1 : 1-correspondence
{Nilpotent orbits in 𝔰𝔭2𝑛} ←→P−1(2𝑛 + 1)

Theorem 2.13 (Gerstenhaber). There is a 1 : 1-correspondence
{Nilpotent 𝐼(⟨·, ·⟩)-orbits in 𝔤𝜖} ←→P𝜖(𝑚)

Example 2.14.
★ In 𝔰𝔬7, there are seven nilpotent orbits, namely

O[7] ,O[5,12] ,O[3,14] ,O[3,22] ,O[32 ,1] ,O[23 ,13] ,O[17]

★ In 𝔰𝔭6, there are eight nilpotent orbits, namely
O[6] ,O[4,2] ,O[4,12] ,O[32] ,O[23] ,O[22 ,12] ,O[2,14] ,O[16]

However, we are not quite satisified yet; what about nilpotent orbits in 𝔰𝔬2𝑛? We shall
classify them now.

Theorem 2.15 (Type 𝐷𝑛 , Springer-Steinberg). Nilpotent orbits in 𝔰𝔬2𝑛 are parametrized
by partitions of 2𝑛 in which even parts occur with even multiplicity, except that very even
partitions d correspond to two orbits, denoted O 𝐼

d and 𝑂 𝐼𝐼
d .

The reason we can’t prove this in the same fashion as for Type 𝐵𝑛 and 𝐶𝑛 , is that for
𝔤 = 𝔰𝔬𝑚 the adjoint group 𝐺ad is isomorphic to 𝑃𝑆𝑂𝑚 , and while the 𝑃𝑆𝑂𝑚-orbits
coincide with the 𝑆𝑂𝑚-orbits, they do not coincide with the 𝐼(⟨·, ·⟩) � 𝑂𝑚-orbits if 𝑚
is even.

Proof of Theorem 2.15. Let 𝑚 = 2𝑛 and, given two actions of 𝔰𝔩2 on C𝑚 invariant under
⟨·, ·⟩1, suppose they are conjugate under an element of 𝑔 ∈ 𝐼(⟨·, ·⟩1). Suppose that
the determinant of the matrix 𝑔 is −1; then we must decide when we can replace 𝑔
by a matrix of determinant 1. Assume first, that at least one part of the partition d
corresponding to either action of 𝔰𝔩2 is odd. Then the proof of 2.10 shows that we can
find an irreducible odd-dimensional summand ofC𝑚 under the first action that pairs
non-degenerately with itself under ⟨·, ·⟩1. Multiplying 𝑔 by −1 on this summand 𝑆
and leaving it unchanged on the orthogonal complement of 𝑆, we obtain a new 𝑔
that also conjugates the first action to second but has determinant 1. Hence, the two
actions are already conjugate under 𝑆𝑂𝑚 or 𝑃𝑆𝑂𝑚 . Now assume that all parts of d are
even, so they all occur with even multiplicity. Then again, the proof of 2.10 shows that
the commutant in 𝑂𝑚 of either 𝔰𝔩2-action is the direct product of symplectic groups,
one for each distinct part of d. Since a symplectic transformation automatically has
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determinant 1, it is impossible to replace 𝑔 by any 𝑔 of determinant 1. Hence, very
even partitions of 𝑚 correspond to two orbits: Given a representative of one of them,
one obtains a representative of the other by conjugating by an orthogonal matrix of
determinant −1. Other partitions of 𝑚 correspond to one orbit. □

3. Topology of Nilpotent Orbits

3.1. The Closure Ordering. Recall the partial ordering on the set of nilpotent orbits,
given by the Zariski closure operation: For a nilpotent element 𝑋 ∈ 𝔤, we set

O𝑋 ≤ O𝑋′ :⇐⇒ O𝑋 ⊂ O𝑋′

where O𝑋 is the Zariski-closure of O𝑋 . In this section, we want to build a bridge
to the previous partition-type classifications of nilpotent orbits in the classical Lie
algebras.
Definition 3.1 (Partial order on P(𝑁)). Given f = [ 𝑓1 , . . . , 𝑓𝑁 ], d = [𝑑1 , . . . , 𝑑𝑁 ] ∈
P(𝑁), we say that d dominates f, denoted by d ≥ f, if∑

1≤ 𝑗≤𝑘
𝑑 𝑗 ≥

∑
1≤ 𝑗≤𝑘

𝑓𝑗 for all 𝑘 ≤ 𝑁

We say that d covers f, if d > f and there is no partition e such that d > e > f.

This partial order is usually referd to as the dominance order.
Example 3.2. Let 𝑁 = 6. We can visualize (P(6), ≥) as follows:

[6]

[5, 1]

[4, 2][
4, 12] [

32]
[3, 2, 1][

3, 13] [
23]

[
22 , 12]
[
2, 14]
[
16]

Lemma 3.3. Let Od and Of be nilpotent orbits in 𝔰𝔩𝑛 corresponding to d and f and let
𝑋 ∈ Od , 𝑌 ∈ Of. Then d ≥ f if and only if rank(𝑋 𝑘) ≥ rank(𝑌𝑘) for all 𝑘 ≥ 0.

Proof. It can be computed, that

rank(𝑋 𝑘) =
∑
{𝑖 |𝑑𝑖≥𝑘}

(𝑑𝑖 − 𝑘)
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Suppose that d ≱ f and let 𝑗 be the smallest integer with
𝑗∑
𝑖=1

𝑑𝑖 <

𝑗∑
𝑖=1

𝑓𝑖 .

Clearly, 𝑑 𝑗 < 𝑓𝑗 . No term 𝑑𝑖 with 𝑖 > 𝑗 contributes to rank(𝑋𝑑𝑗 ), so rank(𝑋𝑑𝑗 ) <
rank(𝑌𝑑𝑗 ). Conversely, suppose that rank(𝑋 𝑘) < rank(𝑌𝑘) for some 𝑘 and let 𝑚 be the
largest index with 𝑓𝑚 ≥ 𝑘. Then

rank(𝑌𝑘) =
𝑚∑
𝑖=1
( 𝑓𝑖 − 𝑘),

while
𝑚∑
𝑖=1
(𝑑𝑖 − 𝑘) ≤ rank(𝑋 𝑘).

Hence
𝑚∑
𝑖=1

𝑑𝑖 <
𝑚∑
𝑖=1

𝑓𝑖 ,

so that d ≱ f. □

Lemma 3.4 (Gerstenhaber). Let d, f ∈ P(𝑁) with d = [𝑑1 , . . . , 𝑑𝑁 ]. Then d covers f if
and only if f can be obtained from d by the following procedure: Choose an index 𝑖 and let 𝑗
be the smallest index greater than 𝑖 such that 0 ≤ 𝑑 𝑗 < 𝑑𝑖 − 1. Assume that either 𝑑 𝑗 = 𝑑𝑖 − 2
or 𝑑𝑘 = 𝑑𝑖 whenever 𝑖 < 𝑘 < 𝑗. Then the parts of f are obtained by from the 𝑑𝑘 by replacing
𝑑𝑖 , 𝑑𝑗 by 𝑑𝑖 − 1, 𝑑𝑗 + 1.

Proof. See Lemma 6.2.4 in [CM93]. □

Theorem 3.5 (Gerstenhaber, Hesselink). Let 𝔤 be a classical Lie algebra, and let d, f be
partitions of two nilpotent orbits Od ,Of in 𝔤. Then Od > Of if and only if d > f.

Proof. Let 𝑋 ∈ Od , 𝑌 ∈ Of. Since the rank of any power of a matrix is invariant under
conjugation, and since the condition that the rank of a matrix is a zariski-closed
condition (because cod(rank(-)) = N, i.e. discrete), we can deduce

Od > Of =⇒ rank(𝑋 𝑘) > rank(𝑌𝑘) for all 𝑘
3.3⇐⇒ d > f

We will prove the converse for 𝔤 = 𝔰𝔩𝑛 case and refer the reader to [Hes76] for the
more general case. Let d > f and assume that without loss of generality, d covers f.
Chose a standard triple in 𝔤 with 𝑋 ∈ Od as in 1 and define the subalgebra

𝔮2 =
∑
𝑖≥2

𝔤𝑖 ,

where
𝔤𝑖 = {𝑍 ∈ 𝔤 | ad𝐻 𝑍 = [𝐻, 𝑍] = 𝑖𝑍}

Using 1, we can see that Of is represented by an element of 𝔮2. By a Lemma of Kostant
(Lemma 4.1.4 in [CM93]), the desired result follows. □

Note that we wrote > instead of ≥ since for Type 𝐷, we have two orbits attached to a
very even partition which are incomparable because they have the same dimension.
But we still get:
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Corollary 3.6. Let 𝔤 be a Lie algebra of 𝐴, 𝐵 or 𝐶. Let d, f be partitions of two nilpotent
orbits Od ,Of in 𝔤. Then Od ≥ Of, if and only if d ≥ f.

This tells us that the bĳections established in 2.11 can be regarded as an isomorphism
in a slightly more interesting category than Set, namely the category of posets.
Moreover, (N , ≥) and (P𝔤(𝑁), ≥)1 are equivalent, regarded as poset category.

Example 3.7.
(1) Let 𝔤 = 𝔰𝔩6. Then the diagram of nilpotent orbits in coincides with the diagram

given above.
(2) Let 𝔤 = 𝔰𝔭6. We can visualize (N , ≥) as follows:

O[6]

O[4,2]

O[4,12] O[32]

O[23]

O[22 ,12]

O[2,14]

O[16]

For more diagrams in the classical, as well as the exceptional case, see Chapter 4 in
[Spa82].

3.2. The Fundamental Group and A (O). The goal of this section is to study the
fundamental group of a given nilpotent orbit O𝑋 in 𝔤. It turns out that its useful to
study the universal cover Õ𝑋 of O𝑋 . Recall that the universal covering 𝑝 : 𝐺sc → 𝐺ad
has a natural complex Lie group structure (c.f. Prop. 7.9 in [FH91]). In particular,
𝑝 is a homomorphism of Lie groups whose kernel is precisely the center 𝑍 of 𝐺sc.
Recall the following definition:

Definition 3.8 (Homogeneous Space). Let C be a locally small category which admits a
functor𝑈 : C → Set, 𝑋 an object of C and 𝐺 a group. Given a group homomorphism

𝜂 : 𝐺→ AutC (𝑋),
𝑔 ↦→ 𝜂𝑔

the triple (𝑋, 𝜂, 𝑈) is called a homogeneous space for 𝐺, if 𝐺 acts transitively, i.e. the map

𝐺 ×𝑈(𝑋) → 𝑈(𝑋) ×𝑈(𝑋)
(𝑔, 𝑥) ↦→ (𝑥, 𝜂𝑔(𝑥))

is surjective.

1P𝔤(𝑁) denotes the set of partitions corresponding to 𝔤 via 2.11.



NILPOTENT ORBITS AND THEIR FUNDAMENTAL GROUP IN THE CLASSICAL CASE 9

Before computing the fundamental group of O𝑋 , we shall explain how to get an
action of 𝐺sc on Õ𝑋 : Recall that for a path-connected, locally path-connected, locally
relatively simply connected pointed space (𝑋, 𝑥0), the (up to isomorphism) unique
simply connected covering space is given by

�̃� = {[ 𝑓 ] rel 𝜕𝐼 | 𝑓 is a path in 𝑋 with 𝑓 (0) = 𝑥0}

topologized in the usual fashion (c.f. Thm. 8.4 in [Bre93]). Now let

𝐺 × 𝑋 → 𝑋,

(𝑔, 𝑥) ↦→ 𝑔 · 𝑥

be an action of a Lie group on a space 𝑋. Since the universal covering 𝑝 : �̃�→ 𝐺 is a
surjective homomorphism, composition yields a lift of the action of 𝐺 to an action of
�̃�

�̃� × 𝑋

𝐺 × 𝑋 𝑋

We are now in the position to lift the action of �̃� on 𝑋 to an action on �̃�. We define

�̃� × �̃� → �̃� , (𝑔, 𝛾) ↦→ (𝜔 : 𝑡 ↦→ 𝑔(𝑡) · 𝛾(𝑡))

and get a well-defined group action. Obviously, the following diagram commutes:

�̃� × �̃� �̃�

𝐺 × 𝑋 𝑋

We will now return to the usual setting where 𝔤 is a classical Lie algebra and O𝑋 a
nilpotent orbit in 𝔤.

Lemma 3.9. (1) Õ𝑋 � 𝐺sc/(𝐺𝑋sc)◦. Moreover, Õ𝑋 is a homogeneous 𝐺sc-space.
(2) The group𝜋1(O𝑋) is isomorphic to the component group𝐺𝑋sc/(𝐺𝑋sc)◦ of the centralizer

of 𝑋 in 𝐺sc.

Proof. (1) By simple connectedness of 𝐺sc, the action is transitive, proving the
first claim. Let 𝑋′ ∈ 𝐹 := 𝑝−1({𝑋}) where 𝑝 : Õ𝑋 → O𝑋 is the covering map.
Consider an element 𝑌 ∈ (𝐺𝑋sc)◦. Then

𝑝(𝑌 · 𝑋′) = 𝑌 · 𝑝(𝑋′)
= 𝑌 · 𝑋
= 𝑋

Thus, the (𝐺𝑋sc)◦-Orbit of 𝑋′ is a connected subspace of 𝐹, hence equal to {𝑋′}
by discreteness of the fiber. We have (𝐺𝑋sc)◦ ⊂ stab𝑋′(𝐺sc) and get a covering

𝐺sc/(𝐺𝑋sc)◦ → Õ𝑋

On the other hand, we have a covering
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𝐺sc/(𝐺𝑋sc)◦

O𝑋

which must in turn be covered by Õ𝑋 , yielding an isomorphism of coverings

Õ𝑋 𝐺sc/(𝐺𝑋sc)◦

O𝑋

∼

(2) Since (𝐺𝑋sc)◦ acts trivially on the fiber, we get

Deck(Õ𝑋)
(1)
= Deck(𝐺sc/(𝐺𝑋sc)◦)
= 𝐺𝑋sc/(𝐺𝑋sc)◦.

Thus,
𝜋1(O𝑋) = Deck(Õ𝑋)

= 𝐺𝑋sc/(𝐺𝑋sc)◦

□

Definition 3.10 (𝐺-equivariant Fundamental Group). Let 𝐺 be a complex Lie group with
Lie algebra 𝔤 and O𝑋 a nilpotent orbit. The group

𝜋𝐺1 (O𝑋) := 𝐺𝑋/(𝐺𝑋)◦

is called the 𝐺-equivariant fundament group of O𝑋 .

Note that 𝜋𝐺1 (O𝑋) is the Deck transformation group of the largest covering space with
a 𝐺-action. By 3.9, we have

𝜋𝐺sc
1 (O𝑋) = 𝐺𝑋sc/(𝐺𝑋sc)◦ � 𝜋1(O𝑋)

We write A (O𝑋) = 𝜋𝐺ad
1 (O𝑋). Recall that, given a nilpotent element 𝑋 ∈ 𝔤, we

can construct a standard triple {𝐻, 𝑋, 𝑌} using Jacobson-Morozov and get a unique
homomorphism

𝜙 : 𝔰𝔩2 → 𝔤

which is determined by the standard triple. We set

𝔤𝜙 := {𝑍 ∈ 𝔤 | [𝑍,𝑉] = 0 for all 𝑉 ∈ 𝔞}

where 𝔞 = C⟨𝐻, 𝑋, 𝑌⟩. Similarly, let 𝐺𝜙
ad denote the centralizer of 𝔞 in 𝐺ad. By 3.7.5

in [CM93], we have
𝐺𝑋/(𝐺𝑋)◦ = 𝐺𝜙/(𝐺𝜙)◦

Thus, we are reduced to studying the centralizier of im(𝜙) in 𝐺. Assume now, that 𝔤
is classical.

Example 3.11.
★ If 𝔤 = 𝔰𝔩𝑛 , then 𝐺sc = 𝑆𝐿𝑛 .
★ If 𝔤 = 𝔰𝔭2𝑛 , then 𝐺sc = 𝑆𝑝2𝑛 .
★ If 𝔤 = 𝔰𝔬𝑁 , then 𝐺sc is a double cover for 𝑆𝑂𝑁 , denoted 𝑆𝑝𝑖𝑛𝑁 .
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Notation.
★ If𝐻 is any group, let𝐻𝑛

Δ
= 𝜄(𝐻) denote the diagonal copy of𝐻 inside

∏𝑛
𝑖=1 𝐻.

★ If 𝐻1 , . . . , 𝐻𝑛 are matrix groups, let 𝑆(∏𝑛
𝑖=1 𝐻𝑖) denote the subgroup of∏𝑛

𝑖=1 𝐻𝑖 consisting of 𝑚-tuples of matrices with determinant 1.

Remark 3.12. 𝑆(𝐻×𝐾× . . . ) is not necessarily isomorphic to 𝑆(𝐻𝑛
Δ
×𝐾𝑚

Δ
× . . . ), although

𝐻𝑛
Δ
� 𝐻. For example if 𝐻 = 𝐺𝐿𝑛 , we have 𝑆(𝐻) = 𝑆𝐿𝑛 but

𝑆(𝐻2
Δ
) = 𝑆𝐿±𝑛 = {𝑋 ∈ 𝐺𝐿𝑛 | det(𝑋) = ±1}.

Theorem 3.13 (Springer-Steinberg). Let 𝔤 be a classical Lie algebra and O𝑋 a nilpotent
orbit in 𝔤. Write O𝑋 = O[𝑑1 ,...,𝑑𝑁 ] for some d = [𝑑1 , . . . , 𝑑𝑁 ] ∈P(𝑁). Let 𝑟𝑖 = #{ 𝑗 | 𝑑 𝑗 = 𝑖}
be the multiplicities and 𝑠𝑖 = #{ 𝑗 | 𝑑 𝑗 ≥ 𝑖}. Then

𝐺
𝜙
sc �


𝑆(∏𝑖(𝐺𝐿𝑟𝑖 )𝑖Δ) 𝔤 = 𝔰𝔩𝑛∏

𝑖 odd(𝑆𝑝𝑟𝑖 )𝑖Δ ×
∏

𝑖 even(𝑂𝑟𝑖 )𝑖Δ 𝔤 = 𝔰𝔭2𝑛
double cover of 𝐶 := 𝑆(∏𝑖 even(𝑆𝑝𝑟𝑖 )𝑖Δ ×

∏
𝑖 odd(𝑂𝑟𝑖 )𝑖Δ) 𝔤 = 𝔰𝔬𝑁

𝐺
𝜙
ad �


𝑆(∏𝑖(𝐺𝐿𝑟𝑖 )𝑖Δ)/{scalar matrices in 𝑆𝐿𝑛} 𝔤 = 𝔰𝔩𝑛

𝐺
𝜙
sc/{±𝐼} 𝔤 = 𝔰𝔭2𝑛

𝐶 𝔤 = 𝔰𝔬2𝑛+1

𝐶/{±𝐼} 𝔤 = 𝔰𝔬2𝑛 .

In addition, the dimension of 𝔤𝑋 is given by

dim(𝔤𝑋) =


∑
𝑖 𝑠

2
𝑖
− 1 𝔤 = 𝔰𝔩𝑛

1
2
∑
𝑖 𝑠

2
𝑖
+ 1

2
∑
𝑖 odd 𝑟𝑖 𝔤 = 𝔰𝔭2𝑛

1
2
∑
𝑖 𝑠

2
𝑖
− 1

2
∑
𝑖 odd 𝑟𝑖 𝔤 = 𝔰𝔬𝑁 .

Proof. Theorem 6.1.3 in [CM93]. □

The dimension formula

dim(O𝑋) = dim(𝔤) − dim(𝔤𝑋)
from 1.2.15 in [CM93] yields

Corollary 3.14.

dim(O𝑋) =


𝑛2 −∑𝑖 𝑠

2
𝑖

𝔤 = 𝔰𝔩𝑛

2𝑛2 + 𝑛 − 1
2
∑
𝑖 𝑠

2
𝑖
+ 1

2
∑
𝑖 odd 𝑟𝑖 𝔤 = 𝔰𝔬2𝑛+1

2𝑛2 + 𝑛 − 1
2
∑
𝑖 𝑠

2
𝑖
− 1

2
∑
𝑖 odd 𝑟𝑖 𝔤 = 𝔰𝔭2𝑛

2𝑛2 − 𝑛 − 1
2
∑
𝑖 𝑠

2
𝑖
+ 1

2
∑
𝑖 odd 𝑟𝑖 𝔤 = 𝔰𝔬2𝑛

Example 3.15.
(1) Let 𝔤 = 𝔰𝔩6 and O = O[23]. Then

𝑟1 = 0 𝑠1 = 3
𝑟2 = 3 𝑠2 = 3
𝑟3 = 0 𝑠3 = 0

so by 3.13, we have

𝐺
𝜙
sc � 𝑆((𝐺𝐿3)2Δ) � 𝑆𝐿

±
3
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This group has two connected components, though 𝐺𝜙
ad � 𝑆𝐿3 is connected.

It follows that

𝜋1(O)
3.9
� 𝐺𝑋sc/(𝐺𝑋sc)◦

� 𝐺
𝜙
sc/(𝐺

𝜙
sc)◦

� 𝑆𝐿±3 /𝑆𝐿3

� Z/2Z
and

A (O) � {1}
Let 𝑋 ∈ O , then the dimension of O is given by

dim(O) = dim(𝔤) − dim(𝔤𝑋)
3.13
= 35 − 17
= 18

(2) Let 𝔤 = 𝔰𝔩10 ,O = O[7,3]. Then 𝑟3 = 𝑟7 = 1 and 𝑟𝑖 = 0 for all 𝑖 ≠ 3, 7. Now

𝐺
𝜙
sc � 𝑆(𝐺𝐿1 × 𝐺𝐿1) � 𝐺𝐿1 � C

× � 𝐺
𝜙
ad ,

which is connected. Thus

𝜋1(O) = A (O) = {1}
(3) Let 𝔤 = 𝔰𝔭12 and consider the orbit O = O[42 ,22]. Now 𝑟2 = 𝑟4 = 2 while

𝑟1 = 𝑟3 = 0. We have

𝐺
𝜙
sc � (𝑂2)4Δ × (𝑂2)2Δ

and
𝐺

𝜙
ad � 𝐺

𝜙
sc/{±𝐼},

so
𝜋1(O) � A (O) � (Z/2Z)2

For 𝑋 ∈ O , we have dim(𝔤𝑋) = 20, hence dim(O) = 58.
(4) Let 𝔤 = 𝔰𝔬12 ,O = O32 ,22 ,12 . Then 3.13 tells us, that 𝐺𝜙

sc is a double cover of
𝑆((𝑂2)3Δ × (𝑆𝑝2)2Δ × 𝑂2) which can also be regarded as an index 2 subgroup
of 𝑃𝑖𝑛2 × 𝑆𝑝2 × 𝑂2, where 𝑃𝑖𝑛𝑛 is a double cover of 𝑂𝑛 corresponding to the
double cover 𝑆𝑝𝑖𝑛𝑛 of 𝑆𝑂𝑛 . We have 𝐺𝜙

ad = 𝐺
𝜙
sc/{±𝐼} and

𝜋1(O) = A (O) = Z/2Z.

Next, we want give formulae for𝜋1(O) and A (O) of any nilpotent orbit O = O[𝑑1 ,...,𝑑𝑁 ]
in a classical Lie algebra 𝔤.

Notation. We set

𝑎 = number of distinct odd 𝑑𝑖
𝑏 = number of distinct even nonzero 𝑑𝑖
𝑐 = gcd(𝑑1 , . . . , 𝑑𝑁 )

Definition 3.16.
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★ A group 𝐸 is called a central extension of a group 𝐻 by a group 𝐾, if there exists a
short exact sequence

1→ 𝐾 → 𝐸→ 𝐻 → 1
such that 𝐾 is a central subgroup of 𝐸.

★ A partition is called rather odd, if all of its odd parts have multiplicity one.
Remark 3.17. 𝜋1(𝐺ad , 1) lies in the center of 𝐺sc, and the sequence

1→ 𝜋1(𝐺ad , 1) → 𝐺sc → 𝐺→ 1
is exact. Consequently, 𝐺sc is a central extension of 𝐺ad by 𝜋1(𝐺ad , 1). Actually, this
holds for a general Lie group (See 2.5 in [Jam08]).
Corollary 3.18 (Classical Equivariant Fundamental Groups). For a nilpotent orbit in a
classical Lie algebra, 𝜋1(O) and A (O) are given in the following table.

Algebra 𝜋1(Od) A (O)
𝔰𝔩𝑛 Z/𝑐Z {1}
𝔰𝔬2𝑛+1 If d is rather odd, a central exten-

sion by Z/2Z of (Z/2Z)𝑎−1; other
wise, (Z/2Z)𝑎−1

(Z/2Z)𝑎−1

𝔰𝔭2𝑛 (Z/2Z)𝑏 (Z/2Z)𝑏 if all even parts have
even multiplicity; otherwise
(Z/2Z)𝑏−1

𝔰𝔬2𝑛 If d is rather odd, a central exten-
sion by Z/2Z of (Z/2Z)max{0,𝑎−1};
otherwise (Z/2Z)max{0,𝑎−1}

(Z/2Z)max{0,𝑎−1} if all odd parts
have even multiplicity; other-
wise (Z/2Z)max{0,𝑎−2}

Corollary 3.19. Let 𝔤 be a semisimple Lie algebra of classical type and O a nilpotent orbit.
Then A (O) is either trivial or a finite product of Z/2Z. In particular, it is always abelian.
Proposition 3.20. Let O𝑋 be the adjoint orbit through any 𝑋 ∈ 𝔤. Let 𝑋 = 𝑋𝑠 + 𝑋𝑛 be the
Jordan decomposition of 𝑋. Then 𝜋1(O𝑋) is isomorphic to the 𝐺𝑋𝑠sc -equivariant fundamental
group 𝜋𝐺

𝑋𝑠
sc

1 (𝐺
𝑋𝑠
sc · 𝑋𝑛) through 𝑋𝑛 . In particular, every semisimple orbit in 𝔤 is simply

connected.
Proof. By the uniqueness of the Jordan decomposition and 3.9, we have

𝜋1(O𝑋) = 𝐺𝑋sc/(𝐺𝑋sc)◦

= (𝐺𝑋𝑠sc )𝑋𝑛/((𝐺𝑋𝑠sc )𝑋𝑛 )◦

= 𝜋𝐺
𝑋𝑠
sc

1 (𝐺
𝑋𝑠
sc · 𝑋𝑛)

which proves the first statement. For the second assertion, see 2.3.3 in [CM93]. □

4. Explicit Standard Triples

Our next goal is to construct explicit standard triples in some classical Lie algebras.
The main strategy is like this: Given a classical Lie algebra 𝔤, fix a choice of Cartan
subalgebra 𝔥, together with a standard coordinate system on 𝔥. We will then write
down all roots and root spaces of 𝔥 in 𝔤 and also fix a choice of positive roots. Now,
given a partition d, which we saw corresponds to a nilpotent orbit, we construct a
standard triple {𝐻, 𝑋, 𝑌} such that 𝐻 ∈ 𝔥, 𝑋 is a sum of vectors in certain positive
root spaces and 𝑌 is a sum of certain vectors in negative root spaces. First, let’s have
a look at some
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Root Space Decompositions.
★ Let 𝔤 = 𝔰𝔩𝑛 . Denote by 𝔥 the set of diagonal matrices having trace zero. Recall

the matrices 𝐸𝑖 𝑗 having 1 at the (𝑖 , 𝑗)-th entry and zeros elsewhere. Let 𝑒𝑖 ∈ 𝔥∗
with

𝑒𝑖
©«
ℎ1

. . .

ℎ𝑛

ª®®¬ = ℎ𝑖

We get that

(ad𝐻)𝐸𝑖 𝑗 = [𝐻, 𝐸𝑖 𝑗] = (𝑒𝑖(𝐻) − 𝑒 𝑗(𝐻))𝐸𝑖 𝑗
i.e. 𝐸𝑖 𝑗 is a simultaneous eigenvector for all ad(𝐻), with eigenvalue 𝑒𝑖(𝐻) −
𝑒 𝑗(𝐻). The (𝑒𝑖 − 𝑒 𝑗)-root space is spanned by 𝐸𝑖 𝑗 and we get a decomposition

𝔤 = 𝔥 ⊕
⊕
𝑖≠𝑗

C𝐸𝑖 𝑗

★ Let 𝔤 = 𝔰𝔭2𝑛 . Remember that 𝔤may be realised as the following set of matrices:

{
(
𝑍1 𝑍2
𝑍3 −𝑍𝑡1

)
| 𝑍𝑖 ∈ C𝑛×𝑛 , 𝑍2 , 𝑍3 symmetric}

Consider the Cartan subalgebra 𝔥 consisting of matrices of the form

𝐻 =

©«

ℎ1
. . .

ℎ𝑛
−ℎ1

. . .

−ℎ𝑛

ª®®®®®®®®¬
Let 𝑒 𝑗 ∈ 𝔥∗ be the linear functional taking a matrix 𝐻 as above to its 𝑗-th entry.
Then the root system of 𝔤 is given by

Δ = {±𝑒𝑖 ± 𝑒 𝑗 | 𝑖 ≠ 𝑗} ∪ {±2𝑒𝑘}
As positive roots, we chose

Φ = {𝑒𝑖 ± 𝑒 𝑗 , 2𝑒𝑘 | 𝑖 ≠ 𝑗}
The root space decomposition is

𝔤 = 𝔥 ⊕
⊕
𝛼∈Δ
C𝐸𝛼

With 𝐸𝛼 defined as below. Let 𝛼 ∈ {±𝑒𝑖 ± 𝑒 𝑗 , 2𝑒𝑘}. Then 𝐸𝛼 is defined as one
of the following matrices:

𝐸𝑒𝑖−𝑒 𝑗 = 𝐸𝑖 , 𝑗 − 𝐸 𝑗+𝑛,𝑖+𝑛 𝐸2𝑒𝑘 = 𝐸𝑘,𝑘+𝑛

𝐸𝑒𝑖+𝑒 𝑗 = 𝐸𝑖 , 𝑗+𝑛 − 𝐸 𝑗 ,𝑖+𝑛 𝐸−2𝑒𝑘 = 𝐸𝑘+𝑛,𝑘

𝐸−𝑒𝑖−𝑒 𝑗 = 𝐸𝑖+𝑛,𝑗 + 𝐸 𝑗+𝑛,𝑖
We will now proceed with the construction of standard triples for 𝔰𝔩𝑛 and 𝔰𝔭2𝑛 .
Given a partition d, we will break up its parts into chunks, each consisting of one or
two parts. We will attach a set of positive roots to each chunk in such a way, that



NILPOTENT ORBITS AND THEIR FUNDAMENTAL GROUP IN THE CLASSICAL CASE 15

positive roots attached to distinct chunks are orthogonal. Our nilpotent element 𝑋
corresponding to d will be a sum of positive root vector, one for each chunk of d.

Recipe 1 (Type 𝐴𝑛). Let 𝔤 = 𝔰𝔩𝑛 and d ∈ P(𝑛). The chunks of d are just its parts,
each repeated as often as its multiplicity. For each chunk {𝑑𝑖}, choose a block of
consecutive indices {𝑁𝑖 +1, . . . , 𝑁𝑖 +𝑑𝑖} in such a way that disjoint block are attached
to distinct chunks. To every chunk {𝑑𝑖}, attach the set of simple roots

𝐶+ = 𝐶+(𝑑𝑖) = {𝑒𝑁𝑖+1 − 𝑒𝑁𝑖+2 , . . . , 𝑒𝑁𝑖+𝑑𝑖−1 − 𝑒𝑁𝑖+𝑑𝑖 }
Note that for 𝑑𝑖 = 1, 𝐶+ is empty. For every simple root 𝛼 in 𝐶 :=

⋃
𝑖 𝐶
+(𝑑𝑖), let 𝑋𝛼

be an 𝛼-root vector and write 𝑋 =
∑

𝛼∈𝐶 𝑋𝛼. By Lemma 3.2.6 in [CM93], there is
𝑌 =

∑
𝛼∈𝐶 𝑋−𝛼 and 𝐻 ∈ 𝔥 such that {𝐻, 𝑋, 𝑌} is a standard triple. We have

𝐻 =
∑
𝑖

𝐻𝐶(𝑑𝑖 )

where

𝐻𝐶(𝑑𝑖 ) =
𝑑𝑖∑
𝑙=1
(𝑑𝑖 − 2𝑙 + 1)𝐸𝑁𝑖+𝑙 ,𝑁𝑖+𝑙

Recipe 2 (Type 𝐶𝑛). Given d ∈P−1(2𝑛), break it up into chunks of the following types:
pairs {2𝑟 + 1, 2𝑟 + 1} of equal odd parts and single even parts {2𝑞}. Now attach sets
of positive (but not necessarily simple) roots to each chunk 𝐶 as follows. If 𝐶 = {2𝑞},
choose a block { 𝑗 + 1, . . . , 𝑗 + 𝑞} of consecutive indices and let

𝐶+ = 𝐶+(2𝑞) = {𝑒 𝑗+1 − 𝑒 𝑗+2 , . . . , 𝑒 𝑗+𝑞−1 − 𝑒 𝑗+𝑞 , 2𝑒 𝑗+𝑞}
If 𝐶 = {2𝑟 + 1, 2𝑟 + 1}, choose a block {𝑙 + 1, 𝑙 + 2𝑟 + 1} of consecutive indices and let

𝐶+ = 𝐶+(2𝑟 + 1, 2𝑟 + 1) = {𝑒𝑙+1 − 𝑒𝑙+1 , . . . , 𝑒𝑙+2𝑟 − 𝑒𝑙+2𝑟+1}
We further require that the blocks attached to distinct chunks be disjoint. However,
this does not impose any restriction. For example, if 𝔤 = 𝔰𝔭20 and d = [6, 52 , 22], then
its chunks are {6}, {5, 5}, {2} and {2} and we may take

𝐶+(6) = {𝑒1 − 𝑒2 , 𝑒2 − 𝑒3 , 2𝑒3}
𝐶+(5, 5) = {𝑒4 − 𝑒5 , 𝑒5 − 𝑒6 , 𝑒6 − 𝑒7 , 𝑒7 − 𝑒8}
𝐶+(2) = {2𝑒9}
𝐶+(2) = {2𝑒10}

Let 𝐶 =
⋃
𝑖 𝐶
+(𝑑𝑖) and once again define 𝑋 =

∑
𝛼∈𝐶 𝑋𝛼. Then there is a sum 𝑌 =∑

𝛼∈𝐶 𝑋−𝛼 and 𝐻 ∈ 𝔥 such that {𝐻, 𝑋, 𝑌} is a standard triple. We have

𝐻 =
∑
𝐶

𝐻𝐶

where

𝐻𝐶 =

𝑞∑
𝑙=1
(2𝑞 − 2𝑙 + 1)(𝐸 𝑗+𝑙 , 𝑗+𝑙 − 𝐸𝑛+𝑗+𝑙 ,𝑛+𝑗+𝑙)

if 𝐶+ = {𝑒 𝑗+1 − 𝑒 𝑗+2 , . . . , 𝑒 𝑗+𝑞−1 − 𝑒 𝑗+𝑞 , 2𝑒 𝑗+𝑞} and

𝐻𝐶 =

2𝑟∑
𝑚=0
(2𝑟 − 2𝑚)(𝐸𝑙+1+𝑚,𝑙+1+𝑚 − 𝐸𝑛+𝑙+1+𝑚,𝑛+𝑙+1+𝑚)

if 𝐶+ = {𝑒𝑙+1 − 𝑒𝑙+2 , . . . , 𝑒𝑙+2𝑟 − 𝑒𝑙+2𝑟+1}
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Proposition 4.1. If we view 𝔰𝔭2𝑛 as a subalgebra of 𝔰𝔩2𝑛 , then the partition attached to the
standard triple {𝐻, 𝑋, 𝑌} is d.

Proof. See [CM93]. □
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