NILPOTENT ORBITS AND THEIR FUNDAMENTAL GROUP IN THE CLASSICAL CASE

LIVA DILER

ABSTRACT. As observed in the \mathfrak{sl}_n case, nilpotent orbits are closely related to the set $\mathscr{P}(n)$ of partitions of n. This observation leads to the question if one can classify nilpotent orbits for other Lie algebras in the same fashion. We will handle the classical case, giving a complete classification of nilpotent G_{ad} -orbits in \mathfrak{sl}_n , \mathfrak{sp}_{2n} , \mathfrak{so}_{2m+1} and \mathfrak{so}_{2m} . Moreover, we will show that this correspondence also behaves nicely when changing to a more interesting category than **Set**. Having studied the combinatorial nature of nilpotent orbits, we will apply the results from the first section to give a formula for the fundamental group $\pi_1(\mathscr{O}_X)$, as well as the G_{ad} -equivariant fundamental group $\mathscr{A}(\mathscr{O}_X)$ in the classical case. As an application, we will conclude by throwing a quick glance at the construction of explicit standard triples for \mathfrak{sl}_n and \mathfrak{sp}_{2n} .

CONTENTS

1. Preliminaries	1
2. Partition Type Classifications	2
3. Topology of Nilpotent Orbits	6
3.1. The Closure Ordering	6
3.2. The Fundamental Group and $\mathscr{A}(\mathscr{O})$	8
4. Explicit Standard Triples	13
References	17

1. Preliminaries

Definition 1.1 (Partition). *A* partition of a natural number *n* is a tuple $[d_1, \ldots, d_n] \in \mathbb{N}^n$ such that

$$\sum_{i} d_i = n \text{ and } d_1 \ge d_2 \ge \cdots \ge d_n$$

Two partitions $[d_1, \ldots, d_n]$ and $[p_1, \ldots, p_n]$ are said to be equal, if their nonzero parts agree. The set of all partitions of n is denoted $\mathcal{P}(n)$.

Remark 1.2.

- ★ $d_i \neq 0$ for all $i \iff d_i = 1$ for all i.
- ★ Occasionally, we will denote a partition $[d_1, \ldots, d_n]$ simply by **d**.

Definition 1.3 (Exponential Notation). We write $[t_1^{i_1}, \ldots, t_r^{i_r}]$ to denote the partition $[d_1,\ldots,d_n]$, where

$$d_{j} = \begin{cases} t_{1} & 1 \leq j \leq i_{1} \\ t_{2} & i_{1} + 1 \leq j \leq i_{1} + i_{2} \\ t_{3} & i_{1} + 1_{2} + 1 \leq j \leq i_{1} + i_{2} + i_{3} \\ \vdots & \vdots \end{cases}$$

Example 1.4. In exponential notation, we write

$$[4, 32, 23, 1, 010] = [4, 3, 3, 2, 2, 2, 1, 0, \dots, 0]$$

for the partition of 17.

Definition 1.5 (Very even partition). *A partition* $[d_1, \ldots, d_n]$ *of n is called very even, if* for all *i*, *d_i* is even and has even multiplicity.

2. PARTITION TYPE CLASSIFICATIONS

Let $\epsilon = \pm 1$ and consider a non-degenerate form $\langle \cdot, \cdot \rangle_{\epsilon}$ on \mathbb{C}^m , such that

 $\langle A, B \rangle_{\epsilon} = \epsilon \langle B, A \rangle_{\epsilon}$ for all $A, B \in \mathbb{C}^m$.

Remark 2.1.

★ If $\epsilon = -1$, $\langle \cdot, \cdot \rangle_{\epsilon}$ is symplectic.

★ If $\epsilon = 1, \langle \cdot, \cdot \rangle_{\epsilon}$ is symmetric.

Definition 2.2 (Isometry Group). Denote by

- ★ $I(\langle \cdot, \cdot \rangle_{\epsilon}) = \{x \in GL_m(\mathbb{C}) \mid \langle xA, xB \rangle_{\epsilon} = \langle A, B \rangle_{\epsilon} \text{ for all } A, B \in \mathbb{C}^m \}$ the isometry group of $\langle \cdot, \cdot \rangle_{\epsilon}$ on \mathbb{C}^m , and by $\star \mathfrak{g}_{\epsilon} = \{X \in \mathfrak{sl}_m \mid \langle XA, B \rangle_{\epsilon} = -\langle A, XB \rangle_{\epsilon} \text{ for all } A, B \in \mathbb{C}^m\} \text{ its Lie algebra.}$

This definition is well defined: Since $I(\langle \cdot, \cdot \rangle_{\epsilon})$ is a closed subgroup of the Lie group $GL_m(\mathbb{C})$, it is itself a Lie group by Cartans closed-subgroup theorem. Thus, one can speak of its Lie algebra.

Remark 2.3.

- ★ If $\epsilon = -1$, m = 2n must be even, so $I(\langle \cdot, \cdot \rangle_{\epsilon}) = Sp_{2n}$. ★ If $\epsilon = 1$, $I(\langle \cdot, \cdot \rangle_{\epsilon}) \cong O_m$ and $g_1 \cong \mathfrak{so}_m$.

If $\epsilon = -1$, the adjoint group of g_{ϵ} is $PSp_{2n} := Sp_{2n}/\{\pm I\}$ and its orbits coincide with those of Sp_{2n} . If $\epsilon = 1$ and *m* is odd, then $I(\langle \cdot, \cdot \rangle_{\epsilon}) = O_m$ is the direct product its center $\{\pm I\}$ with the adjoint group SO_m of \mathfrak{g}_{ϵ} , so again, the orbits coincide. The problem arises however, when $\epsilon = 1$ and *m* is even. Then the adjoint group of g_{ϵ} becomes $PSO_m := SO_m / \{\pm I\}$, and its orbits do not coincide with those of O_m . As we shall later see, there can only be one O_m -orbit attached to a very even partition $\mathbf{d} \in \mathscr{P}(m)$. It turns out that this orbit is the union $\mathscr{O}_{\mathbf{d}}^{I} \cup \mathscr{O}_{\mathbf{d}}^{II}$ of two orbits corresponding to \mathbf{d} .

Set

$$\mathscr{P}_{\epsilon}(m) = \{ [d_1, \dots, d_n] \in \mathscr{P}(m) : \#\{j \mid d_j = i\} \text{ is even for all } i \text{ with } (-1)^i = \epsilon \}$$

Let g be a classical Lie algebra with *standard representation* on \mathbb{C}^n , i.e.

$$X \cdot v := X(v)$$
 for all $X \in \mathfrak{g}, v \in \mathbb{C}^n$

If $X \in \mathfrak{g}$ is nilpotent, then we can also regard X as a nilpotent element of \mathfrak{sl}_n . Then there is a corresponding partition $\mathbf{d} = [d_1, \dots, d_n]$ and moreover, belongs to a standard

triple in \mathfrak{sl}_n . However, we can also attach to X a standard triple $\{H, X, Y\} \subset \mathfrak{g}$, which is conjugate under GL_n to the first triple. Denote by \mathfrak{a} the span of $\{H, X, Y\}$.

Lemma 2.4. The nonzero d_i are exactly the dimensions of the irreducible summands of the standard representation \mathbb{C}^n , regarded as an α -module.

Our next goal is to establish a bijective correspondence between nilpotent orbits in \mathfrak{sp}_{2n} , resp. \mathfrak{so}_m , and certain partitions of 2n, resp. m.

Let's start with the case $\mathfrak{g} = \mathfrak{sp}_{2n}$. Let $\langle \cdot, \cdot \rangle$ be the non-degenerate symplectic form on \mathbb{C}^{2n} which is preserved by G_{ad} . We get an \mathfrak{a} -module decomposition

$$\mathbb{C}^{2n} = \bigoplus_{r \ge 0} M(r)$$

where M(r) is a finite direct sum of irreducible \mathfrak{a} -modules (i.e. representations of \mathfrak{sl}_2) of highest weight r. By the above Lemma, we can read off the dimension of the summands from the partition $[d_1, \ldots, d_n]$ of X, regarded as a matrix in \mathfrak{sl}_{2n} . For $r \ge 0$, denote by H(r) the highest weight space in M(r). Note that

$$\dim H(r) = \operatorname{mult}(\rho_r, M(r))$$

where ρ_r denotes the irreducible a-module of highest weight. Now, to equip H(r) with a bilinear form, put

$$(v, w)_r := \langle v, Y^r \cdot w \rangle$$
 for all $v, w \in H(r)$

Lemma 2.5. The form $(\cdot, \cdot)_r$ is symplectic (resp. symmetric) if r is even (resp. odd).

Proof. Using g-invariance, we get

$$(v, w)_r = \langle v, Y^r \cdot w \rangle$$

= $\langle v, ad_Y^r(w) \rangle$
= $\langle [v, Y] \cdot Y^{r-1}, w \rangle$
= $\langle [\dots [v, Y] \dots, Y], w \rangle$
= $\begin{cases} \langle Y^r \cdot v, w \rangle & r \text{ even} \\ -\langle Y^r \cdot v, w \rangle & r \text{ odd} \end{cases}$
= $\begin{cases} -(w, v) & r \text{ odd} \\ (w, v) & r \text{ even} \end{cases}$

Lemma 2.6. The form $(\cdot, \cdot)_r$ is non-degenerate for all r.

Proof. Note that the *r*-weight space of \mathbb{C}^{2n} is $\langle \cdot, \cdot \rangle$ -orthogonal to its *s*-weight space, whenever $s \neq -r$, by the invariance of ad_H relative to $\langle \cdot, \cdot \rangle$. Suppose $r \geq 0$. Then H(r) has a canonical complement in the full *r*-weight space. It is spanned by all vectors in this weight space lying in $\langle Y \rangle$. Since $Y^{r+1} \cdot H(r) = 0$, we see that H(r) is orthogonal to this complement with respect to $(\cdot, \cdot)_r$. By \mathfrak{sl}_2 theory, $Y^r \cdot H(r)$ is the lowest weight space in M(r), and it pairs non-degenerately with H(r) via $\langle \cdot, \cdot \rangle$. Thus, $(\cdot, \cdot)_r$ is non-degenerate.

Since the irreducible representation of highest weight r has dimension r + 1 and nondegenerate symplectic forms exist only in even dimension, we deduce the following result. **Corollary 2.7.** The partition $[d_1, \ldots, d_n]$ of X lies in $\mathcal{P}_{-1}(2n)$, i.e. its odd parts occur with even multiplicity.

Thus, we get a well-defined map

$$\Pi_{-1} : \{ \text{nilpotent } I(\langle \cdot, \cdot \rangle) \text{-orbits in } \mathfrak{sp}_{2n} \} \to \mathscr{P}_{-1}(2n)$$
$$\mathscr{O}_{X_{[d_1, \dots, d_{2n}]}} \mapsto [d_1, \dots, d_{2n}]$$

The case $\mathfrak{g} = \mathfrak{so}_m$ is analogous. Again, let $\langle \cdot, \cdot \rangle$ be the non-degenerate form on \mathbb{C}^m preserved by G_{ad} . Denote by \mathfrak{a} the span of a standard triple $\{H, X, Y\}$. Consider again the decomposition

$$\mathbb{C}^m = \bigoplus_{r \ge 0} M(r)$$

and define H(r) and $(\cdot, \cdot)_r$ exactly as above.

Lemma 2.8. The form $(\cdot, \cdot)_r$ is symmetric (resp. symplectic) if r is even (resp. odd).

Corollary 2.9. The partition $[d_1, \ldots, d_n]$ of X lies in $\mathcal{P}_1(m)$, i.e. its odd parts occur with even multiplicity.

Thus, we get a well-defined map

$$\Pi_1: \{\text{nilpotent } I(\langle \cdot, \cdot \rangle) \text{-orbits in } \mathfrak{so}_m\} \to \mathscr{P}_1(m)$$
$$\mathscr{O}_{X_{[d_1,\ldots,d_m]}} \mapsto [d_1,\ldots,d_m]$$

Lemma 2.10 (Wall). *The maps* $\Pi_{\pm 1}$ *are bijections.*

Proof. We will treat the case $g = \mathfrak{sp}_{2m}$, the case $g = \mathfrak{so}_m$ is similar. To prove surjectivity, let $\mathbf{d} = [d_1^{i_1}, \ldots, d_r^{i_r}] \in \mathscr{P}_{-1}(2n)$ and define a vector space

$$V = \bigoplus_{j=1}^{r} V_j$$

where dim $V_j = i_j$. We want to define a form $(\cdot, \cdot) : V \times V \to \mathbb{C}$ on V as follows: $(V_i, V_j) = 0$ if $i \neq j$. Moreover, if d_j is odd (resp. even), we require $(\cdot, \cdot)|_{V_j \times V_j}$ to be non-degenerate and symplectic (resp. symmetric). Note that such a form exists, and is unique up to equivalence. Now for $d_j \neq 1$, replace the summands V_j by $W_j \oplus W'_j$, where W_j, W'_j are isomorphic copies of V_j . Now V is a subspace of the larger vector space

$$\bigoplus_{i=1,d_j\neq 1}' W_j \oplus W_j' \oplus \bigoplus_{j=1,d_j=1}' V_j$$

For $d_j \neq 1$, replace (\cdot, \cdot) on V_j by a symplectic form $\langle \cdot, \cdot \rangle_j$ on $W_j \oplus W'_j$ such that W_j is paired non-degenerately with W'_j and each of W_j and W'_j is self orthogonal. Again up to equivalence, there is a unique way to do this. Consider now a symplectic form $\langle \cdot, \cdot \rangle'$ on $W = \bigoplus_j W_j \oplus W'_j$, which is just the orthogonal sum of the $\langle \cdot, \cdot \rangle_j$. Using the formulas in Lemma 7.2.1 in [Hum72] for the action of the standard basis vectors of \mathfrak{sl}_2 on a finite-dimensional irreducible module, we enlarge each $W_j \oplus W'_j$ to a $d_j i_j$ dimensional \mathfrak{sl}_2 -module, whose highest weight space is W_j and whose lowest weight space is W'_j . This module is the direct sum of i_j irreducible submodules, each of highest weight $d_j - 1$. It admits a non-degenerate symplectic form extending $\langle \cdot, \cdot \rangle_j$ and invariant under the \mathfrak{sl}_2 -action. By Schur's Lemma, this form is unique up to \mathfrak{sl}_2 equivariant equivalence. If $d_k = 1$, then V_k may be regarded as a trivial \mathfrak{sl}_2 -module with a non-degenerate symplectic form $\langle \cdot, \cdot \rangle$. Now, denote by V' the direct sum of all these \mathfrak{sl}_2 -modules with the inherited symplectic form. Then V' is isomorphic to the standard representation \mathbb{C}^{2n} . Clearly, $\mathfrak{sp}(V)$ has a nilpotent element with partition **d**. Hence, Π_{-1} is surjective. For injectivity, note that any two images of \mathfrak{sl}_2 in \mathfrak{sp}_{2n} giving rise to the same partition of 2n must be conjugate under an isometry of the symplectic form.

Thus we get the following classification results.

Theorem 2.11 (Type B_N). There is a 1 : 1-correspondence

{*Nilpotent orbits in* \mathfrak{so}_{2n+1} } $\longleftrightarrow \mathscr{P}_1(2n+1)$

Theorem 2.12 (Type C_N). There is a 1 : 1-correspondence

{*Nilpotent orbits in* \mathfrak{sp}_{2n} } $\longleftrightarrow \mathscr{P}_{-1}(2n+1)$

Theorem 2.13 (Gerstenhaber). *There is a* 1 : 1*-correspondence*

{*Nilpotent* $I(\langle \cdot, \cdot \rangle)$ *-orbits in* \mathfrak{g}_{ϵ} } $\longleftrightarrow \mathscr{P}_{\epsilon}(m)$

Example 2.14.

 \star In 507, there are seven nilpotent orbits, namely

 $\mathcal{O}_{[7]}, \mathcal{O}_{[5,1^2]}, \mathcal{O}_{[3,1^4]}, \mathcal{O}_{[3,2^2]}, \mathcal{O}_{[3^2,1]}, \mathcal{O}_{[2^3,1^3]}, \mathcal{O}_{[1^7]}$

 \star In \mathfrak{sp}_6 , there are eight nilpotent orbits, namely

 $\mathcal{O}_{[6]}, \mathcal{O}_{[4,2]}, \mathcal{O}_{[4,1^2]}, \mathcal{O}_{[3^2]}, \mathcal{O}_{[2^3]}, \mathcal{O}_{[2^2,1^2]}, \mathcal{O}_{[2,1^4]}, \mathcal{O}_{[1^6]}$

However, we are not quite satisified yet; what about nilpotent orbits in \mathfrak{so}_{2n} ? We shall classify them now.

Theorem 2.15 (Type D_n , Springer-Steinberg). Nilpotent orbits in \mathfrak{so}_{2n} are parametrized by partitions of 2n in which even parts occur with even multiplicity, except that very even partitions *d* correspond to two orbits, denoted \mathcal{O}_d^I and \mathcal{O}_d^{II} .

The reason we can't prove this in the same fashion as for Type B_n and C_n , is that for $g = \mathfrak{so}_m$ the adjoint group G_{ad} is isomorphic to PSO_m , and while the PSO_m -orbits coincide with the SO_m -orbits, they do not coincide with the $I(\langle \cdot, \cdot \rangle) \cong O_m$ -orbits if m is even.

Proof of Theorem 2.15. Let m = 2n and, given two actions of \mathfrak{sl}_2 on \mathbb{C}^m invariant under $\langle \cdot, \cdot \rangle_1$, suppose they are conjugate under an element of $g \in I(\langle \cdot, \cdot \rangle_1)$. Suppose that the determinant of the matrix g is -1; then we must decide when we can replace g by a matrix of determinant 1. Assume first, that at least one part of the partition \mathbf{d} corresponding to either action of \mathfrak{sl}_2 is odd. Then the proof of 2.10 shows that we can find an irreducible odd-dimensional summand of \mathbb{C}^m under the first action that pairs non-degenerately with itself under $\langle \cdot, \cdot \rangle_1$. Multiplying g by -1 on this summand S and leaving it unchanged on the orthogonal complement of S, we obtain a new g that also conjugates the first action to second but has determinant 1. Hence, the two actions are already conjugate under SO_m or PSO_m . Now assume that all parts of \mathbf{d} are even, so they all occur with even multiplicity. Then again, the proof of 2.10 shows that the commutant in O_m of either \mathfrak{sl}_2 -action is the direct product of symplectic groups, one for each distinct part of \mathbf{d} . Since a symplectic transformation automatically has

determinant 1, it is impossible to replace *g* by any *g* of determinant 1. Hence, very even partitions of *m* correspond to two orbits: Given a representative of one of them, one obtains a representative of the other by conjugating by an orthogonal matrix of determinant -1. Other partitions of *m* correspond to one orbit.

3. TOPOLOGY OF NILPOTENT ORBITS

3.1. The Closure Ordering. Recall the partial ordering on the set of nilpotent orbits, given by the Zariski closure operation: For a nilpotent element $X \in g$, we set

$$\mathcal{O}_X \leq \mathcal{O}_{X'} : \iff \overline{\mathcal{O}_X} \subset \overline{\mathcal{O}_{X'}}$$

where $\overline{\mathscr{O}_X}$ is the Zariski-closure of \mathscr{O}_X . In this section, we want to build a bridge to the previous partition-type classifications of nilpotent orbits in the classical Lie algebras.

Definition 3.1 (Partial order on $\mathscr{P}(N)$). Given $f = [f_1, \ldots, f_N], d = [d_1, \ldots, d_N] \in \mathscr{P}(N)$, we say that d dominates f, denoted by $d \ge f$, if

$$\sum_{1 \le j \le k} d_j \ge \sum_{1 \le j \le k} f_j \text{ for all } k \le N$$

We say that d covers f, if d > f and there is no partition e such that d > e > f.

This partial order is usually referd to as the *dominance order*.

Example 3.2. Let N = 6. We can visualize $(\mathcal{P}(6), \geq)$ as follows:

Lemma 3.3. Let \mathcal{O}_d and \mathcal{O}_f be nilpotent orbits in \mathfrak{sl}_n corresponding to d and f and let $X \in \mathcal{O}_d, Y \in \mathcal{O}_f$. Then $d \ge f$ if and only if $\operatorname{rank}(X^k) \ge \operatorname{rank}(Y^k)$ for all $k \ge 0$. *Proof.* It can be computed, that

 $\operatorname{rank}(X^k) = \sum_{\{i \mid d_i \ge k\}} (d_i - k)$

Suppose that $\mathbf{d} \not\geq \mathbf{f}$ and let *j* be the smallest integer with

$$\sum_{i=1}^j d_i < \sum_{i=1}^j f_i.$$

Clearly, $d_j < f_j$. No term d_i with i > j contributes to rank (X^{d_j}) , so rank $(X^{d_j}) <$ rank (Y^{d_j}) . Conversely, suppose that rank $(X^k) <$ rank (Y^k) for some k and let m be the largest index with $f_m \ge k$. Then

$$\operatorname{rank}(Y^k) = \sum_{i=1}^m (f_i - k),$$

while

$$\sum_{i=1}^{m} (d_i - k) \le \operatorname{rank}(X^k)$$

Hence

$$\sum_{i=1}^m d_i < \sum_{i=1}^m f_i,$$

so that $\mathbf{d} \not\geq \mathbf{f}$.

Lemma 3.4 (Gerstenhaber). Let $d, f \in \mathcal{P}(N)$ with $d = [d_1, \ldots, d_N]$. Then d covers f if and only if f can be obtained from d by the following procedure: Choose an index i and let j be the smallest index greater than i such that $0 \le d_j < d_i - 1$. Assume that either $d_j = d_i - 2$ or $d_k = d_i$ whenever i < k < j. Then the parts of f are obtained by from the d_k by replacing d_i, d_j by $d_i - 1, d_j + 1$.

Proof. See Lemma 6.2.4 in [CM93].

Theorem 3.5 (Gerstenhaber, Hesselink). *Let* \mathfrak{g} *be a classical Lie algebra, and let* d, f *be partitions of two nilpotent orbits* \mathcal{O}_d , \mathcal{O}_f *in* \mathfrak{g} . *Then* $\mathcal{O}_d > \mathcal{O}_f$ *if and only if* d > f.

Proof. Let $X \in \mathcal{O}_d$, $Y \in \mathcal{O}_f$. Since the rank of any power of a matrix is invariant under conjugation, and since the condition that the rank of a matrix is a zariski-closed condition (because $cod(rank(-)) = \mathbb{N}$, i.e. discrete), we can deduce

$$\mathcal{O}_{\mathbf{d}} > \mathcal{O}_{\mathbf{f}} \implies \operatorname{rank}(X^{\kappa}) > \operatorname{rank}(Y^{\kappa}) \text{ for all } k$$

 $\stackrel{3.3}{\longleftrightarrow} \mathbf{d} > \mathbf{f}$

We will prove the converse for $g = \mathfrak{sl}_n$ case and refer the reader to [Hes76] for the more general case. Let $\mathbf{d} > \mathbf{f}$ and assume that without loss of generality, \mathbf{d} covers \mathbf{f} . Chose a standard triple in g with $X \in \mathcal{O}_{\mathbf{d}}$ as in 1 and define the subalgebra

$$\mathfrak{q}_2 = \sum_{i \geq 2} \mathfrak{g}_i,$$

where

$$\mathfrak{g}_i = \{ Z \in \mathfrak{g} \mid \mathrm{ad}_H \, Z = [H, Z] = iZ \}$$

Using 1, we can see that $\mathcal{O}_{\mathbf{f}}$ is represented by an element of \mathfrak{q}^2 . By a Lemma of Kostant (Lemma 4.1.4 in [CM93]), the desired result follows.

Note that we wrote > instead of \geq since for Type *D*, we have two orbits attached to a very even partition which are incomparable because they have the same dimension. But we still get:

Corollary 3.6. Let g be a Lie algebra of A, B or C. Let d, f be partitions of two nilpotent orbits \mathcal{O}_d , \mathcal{O}_f in g. Then $\mathcal{O}_d \geq \mathcal{O}_f$, if and only if $d \geq f$.

This tells us that the bijections established in 2.11 can be regarded as an isomorphism in a slightly more interesting category than **Set**, namely the category of posets. Moreover, (\mathcal{N}, \geq) and $(\mathcal{P}_g(N), \geq)^1$ are equivalent, regarded as poset category.

Example 3.7.

- (1) Let $g = \mathfrak{sl}_6$. Then the diagram of nilpotent orbits in coincides with the diagram given above.
- (2) Let $\mathfrak{g} = \mathfrak{sp}_6$. We can visualize (\mathcal{N}, \geq) as follows:

For more diagrams in the classical, as well as the exceptional case, see Chapter 4 in [Spa82].

3.2. The Fundamental Group and $\mathscr{A}(\mathscr{O})$. The goal of this section is to study the fundamental group of a given nilpotent orbit \mathscr{O}_X in g. It turns out that its useful to study the universal cover $\widetilde{\mathscr{O}}_X$ of \mathscr{O}_X . Recall that the universal covering $p : G_{sc} \to G_{ad}$ has a natural complex Lie group structure (c.f. Prop. 7.9 in [FH91]). In particular, p is a homomorphism of Lie groups whose kernel is precisely the center Z of G_{sc} . Recall the following definition:

Definition 3.8 (Homogeneous Space). Let \mathscr{C} be a locally small category which admits a functor $U : \mathscr{C} \to \mathbf{Set}$, X an object of \mathscr{C} and G a group. Given a group homomorphism

$$\eta: G \to \operatorname{Aut}_{\mathscr{C}}(X),$$
$$g \mapsto \eta_g$$

the triple (X, η, U) is called a homogeneous space for G, if G acts transitively, i.e. the map

$$G \times U(X) \to U(X) \times U(X)$$
$$(g, x) \mapsto (x, \eta_g(x))$$

is surjective.

 $^{{}^{1}\}mathscr{P}_{\mathfrak{g}}(N)$ denotes the set of partitions corresponding to g via 2.11.

Before computing the fundamental group of \mathcal{O}_X , we shall explain how to get an action of G_{sc} on $\tilde{\mathcal{O}}_X$: Recall that for a path-connected, locally path-connected, locally relatively simply connected pointed space (X, x_0), the (up to isomorphism) unique simply connected covering space is given by

$$\tilde{X} = \{[f] \operatorname{rel} \partial I \mid f \text{ is a path in } X \text{ with } f(0) = x_0\}$$

topologized in the usual fashion (c.f. Thm. 8.4 in [Bre93]). Now let

$$G \times X \to X,$$

(g, x) \mapsto g \cdot x

be an action of a Lie group on a space *X*. Since the universal covering $p : \tilde{G} \to G$ is a surjective homomorphism, composition yields a lift of the action of *G* to an action of \tilde{G}

We are now in the position to lift the action of \tilde{G} on X to an action on \tilde{X} . We define

$$\tilde{G} \times \tilde{X} \to \tilde{X}, (g, \gamma) \mapsto (\omega : t \mapsto g(t) \cdot \gamma(t))$$

and get a well-defined group action. Obviously, the following diagram commutes:

We will now return to the usual setting where g is a classical Lie algebra and \mathcal{O}_X a nilpotent orbit in g.

Lemma 3.9. (1) $\tilde{\mathscr{O}}_X \cong G_{sc}/(G_{sc}^X)^\circ$. Moreover, $\tilde{\mathscr{O}}_X$ is a homogeneous G_{sc} -space.

(2) The group $\pi_1(\mathscr{O}_X)$ is isomorphic to the component group $G_{sc}^X/(G_{sc}^X)^\circ$ of the centralizer of X in G_{sc} .

Proof. (1) By simple connectedness of G_{sc} , the action is transitive, proving the first claim. Let $X' \in F := p^{-1}(\{X\})$ where $p : \tilde{\mathcal{O}}_X \to \mathcal{O}_X$ is the covering map. Consider an element $Y \in (G_{sc}^X)^\circ$. Then

$$p(Y \cdot X') = Y \cdot p(X')$$
$$= Y \cdot X$$
$$= X$$

Thus, the $(G_{sc}^X)^\circ$ -Orbit of X' is a connected subspace of *F*, hence equal to {X'} by discreteness of the fiber. We have $(G_{sc}^X)^\circ \subset \operatorname{stab}_{X'}(G_{sc})$ and get a covering

$$G_{\rm sc}/(G_{\rm sc}^{\rm X})^{\circ} \to \tilde{\mathscr{O}}_{\rm X}$$

On the other hand, we have a covering

which must in turn be covered by $\tilde{\mathscr{O}}_X$, yielding an isomorphism of coverings

(2) Since $(G_{sc}^X)^\circ$ acts trivially on the fiber, we get

$$\begin{aligned} \operatorname{Deck}(\tilde{\mathscr{O}}_X) \stackrel{(1)}{=} \operatorname{Deck}(G_{\mathrm{sc}}/(G_{\mathrm{sc}}^X)^\circ) \\ &= G_{\mathrm{sc}}^X/(G_{\mathrm{sc}}^X)^\circ. \end{aligned}$$

Thus,

$$\pi_1(\mathcal{O}_X) = \text{Deck}(\tilde{\mathcal{O}}_X)$$
$$= G_{\text{sc}}^X / (G_{\text{sc}}^X)^{\circ}$$

-

Definition 3.10 (*G*-equivariant Fundamental Group). Let *G* be a complex Lie group with Lie algebra g and \mathcal{O}_X a nilpotent orbit. The group

$$\pi_1^G(\mathcal{O}_X) := G^X/(G^X)^\circ$$

is called the G-equivariant fundament group of \mathcal{O}_X .

Note that $\pi_1^G(\mathscr{O}_X)$ is the Deck transformation group of the largest covering space with a *G*-action. By 3.9, we have

$$\pi_1^{G_{\rm sc}}(\mathcal{O}_X) = G_{\rm sc}^X/(G_{\rm sc}^X)^\circ \cong \pi_1(\mathcal{O}_X)$$

We write $\mathscr{A}(\mathscr{O}_X) = \pi_1^{G_{ad}}(\mathscr{O}_X)$. Recall that, given a nilpotent element $X \in \mathfrak{g}$, we can construct a standard triple $\{H, X, Y\}$ using Jacobson-Morozov and get a unique homomorphism

$$\phi:\mathfrak{sl}_2\to\mathfrak{g}$$

which is determined by the standard triple. We set

$$\mathfrak{g}^{\phi} := \{ Z \in \mathfrak{g} \mid [Z, V] = 0 \text{ for all } V \in \mathfrak{a} \}$$

where $\mathfrak{a} = \mathbb{C}\langle H, X, Y \rangle$. Similarly, let G_{ad}^{ϕ} denote the centralizer of \mathfrak{a} in G_{ad} . By 3.7.5 in [CM93], we have

$$G^X/(G^X)^\circ = G^\phi/(G^\phi)^\circ$$

Thus, we are reduced to studying the centralizier of $im(\phi)$ in *G*. Assume now, that g is classical.

Example 3.11.

- ★ If $g = \mathfrak{sl}_n$, then $G_{sc} = SL_n$.
- ★ If $g = sp_{2n}$, then $G_{sc} = Sp_{2n}$.
- ★ If $g = so_N$, then G_{sc} is a double cover for SO_N , denoted $Spin_N$.

Notation.

- ★ If *H* is any group, let *H*ⁿ_Δ = *ι*(*H*) denote the diagonal copy of *H* inside ∏ⁿ_{i=1} *H*.
 ★ If *H*₁,..., *H*_n are matrix groups, let *S*(∏ⁿ_{i=1}*H*_i) denote the subgroup of ∏ⁿ_{i=1} *H*_i consisting of *m*-tuples of matrices with determinant 1.

Remark 3.12. $S(H \times K \times ...)$ is not necessarily isomorphic to $S(H^n_\Delta \times K^m_\Delta \times ...)$, although $H^n_{\Delta} \cong H$. For example if $H = GL_n$, we have $S(H) = SL_n$ but

$$S(H^2_{\Lambda}) = SL^{\pm}_n = \{X \in GL_n \mid \det(X) = \pm 1\}.$$

Theorem 3.13 (Springer-Steinberg). Let g be a classical Lie algebra and \mathcal{O}_X a nilpotent orbit in g. Write $\mathcal{O}_X = \mathcal{O}_{[d_1,\dots,d_N]}$ for some $d = [d_1,\dots,d_N] \in \mathcal{P}(N)$. Let $r_i = \#\{j \mid d_j = i\}$ be the multiplicities and $s_i = \#\{j \mid d_j \ge i\}$. Then

$$\begin{split} G^{\phi}_{sc} &\cong \begin{cases} S(\prod_{i} (GL_{r_{i}})^{i}_{\Delta}) & g = \mathfrak{sl}_{n} \\ \prod_{i \text{ odd}} (Sp_{r_{i}})^{i}_{\Delta} \times \prod_{i \text{ even}} (O_{r_{i}})^{i}_{\Delta} & g = \mathfrak{sp}_{2n} \\ double \text{ cover of } C &:= S(\prod_{i \text{ even}} (Sp_{r_{i}})^{i}_{\Delta} \times \prod_{i \text{ odd}} (O_{r_{i}})^{i}_{\Delta}) & g = \mathfrak{so}_{N} \end{cases} \\ G^{\phi}_{ad} &\cong \begin{cases} S(\prod_{i} (GL_{r_{i}})^{i}_{\Delta}) / \{\text{scalar matrices in } SL_{n}\} & g = \mathfrak{sl}_{n} \\ G^{\phi}_{sc} / \{\pm I\} & g = \mathfrak{so}_{2n+1} \\ C & g = \mathfrak{so}_{2n}. \end{cases} \end{split}$$

In addition, the dimension of g^X is given by

$$\dim(\mathfrak{g}^X) = \begin{cases} \sum_i s_i^2 - 1 & \mathfrak{g} = \mathfrak{sl}_n \\ \frac{1}{2} \sum_i s_i^2 + \frac{1}{2} \sum_{i \text{ odd}} r_i & \mathfrak{g} = \mathfrak{sp}_{2n} \\ \frac{1}{2} \sum_i s_i^2 - \frac{1}{2} \sum_{i \text{ odd}} r_i & \mathfrak{g} = \mathfrak{so}_N. \end{cases}$$

Proof. Theorem 6.1.3 in [CM93].

The dimension formula

$$\dim(\mathscr{O}_X) = \dim(\mathfrak{g}) - \dim(\mathfrak{g}^X)$$

from 1.2.15 in [CM93] yields

Corollary 3.14.

$$\dim(\mathscr{O}_X) = \begin{cases} n^2 - \sum_i s_i^2 & g = \mathfrak{sI}_n \\ 2n^2 + n - \frac{1}{2} \sum_i s_i^2 + \frac{1}{2} \sum_{i \text{ odd}} r_i & g = \mathfrak{so}_{2n+1} \\ 2n^2 + n - \frac{1}{2} \sum_i s_i^2 - \frac{1}{2} \sum_{i \text{ odd}} r_i & g = \mathfrak{sp}_{2n} \\ 2n^2 - n - \frac{1}{2} \sum_i s_i^2 + \frac{1}{2} \sum_{i \text{ odd}} r_i & g = \mathfrak{so}_{2n} \end{cases}$$

Example 3.15.

(1) Let $\mathfrak{g} = \mathfrak{sl}_6$ and $\mathscr{O} = \mathscr{O}_{[2^3]}$. Then

$$r_1 = 0$$
 $s_1 = 3$ $r_2 = 3$ $s_2 = 3$ $r_3 = 0$ $s_3 = 0$

so by 3.13, we have

$$G_{\rm sc}^{\phi} \cong S((GL_3)^2_{\Delta}) \cong SL_3^{\pm}$$

This group has two connected components, though $G_{ad}^{\phi} \cong SL_3$ is connected. It follows that

$$\pi_{1}(\mathscr{O}) \stackrel{3.9}{\cong} G_{\mathrm{sc}}^{X} / (G_{\mathrm{sc}}^{X})^{\circ}$$
$$\cong G_{\mathrm{sc}}^{\phi} / (G_{\mathrm{sc}}^{\phi})^{\circ}$$
$$\cong SL_{3}^{\pm} / SL_{3}$$
$$\cong \mathbb{Z} / 2\mathbb{Z}$$

and

$$\mathscr{A}(\mathscr{O})\cong\{1\}$$

Let $X \in \mathcal{O}$, then the dimension of \mathcal{O} is given by

$$\dim(\mathscr{O}) = \dim(\mathfrak{g}) - \dim(\mathfrak{g}^X)$$
$$\stackrel{3.13}{=} 35 - 17$$
$$= 18$$

(2) Let $g = \mathfrak{sl}_{10}$, $\mathcal{O} = \mathcal{O}_{[7,3]}$. Then $r_3 = r_7 = 1$ and $r_i = 0$ for all $i \neq 3, 7$. Now

$$G_{\rm sc}^{\phi} \cong S(GL_1 \times GL_1) \cong GL_1 \cong \mathbb{C}^{\times} \cong G_{\rm ad}^{\phi},$$

which is connected. Thus

$$\pi_1(\mathcal{O}) = \mathscr{A}(\mathcal{O}) = \{1\}$$

(3) Let $g = \mathfrak{sp}_{12}$ and consider the orbit $\mathcal{O} = \mathcal{O}_{[4^2, 2^2]}$. Now $r_2 = r_4 = 2$ while $r_1 = r_3 = 0$. We have

$$G_{\rm sc}^{\phi} \cong (O_2)^4_{\Delta} \times (O_2)^2_{\Delta}$$

and

$$G_{\rm ad}^{\phi} \cong G_{\rm sc}^{\phi} / \{\pm I\},$$

so

$$\pi_1(\mathcal{O}) \cong \mathscr{A}(\mathcal{O}) \cong (\mathbb{Z}/2\mathbb{Z})^2$$

For $X \in \mathcal{O}$, we have dim $(\mathfrak{g}^X) = 20$, hence dim $(\mathcal{O}) = 58$.

(4) Let $g = so_{12}$, $\mathcal{O} = \mathcal{O}_{3^2,2^2,1^2}$. Then 3.13 tells us, that G_{sc}^{ϕ} is a double cover of $S((O_2)_{\Delta}^3 \times (Sp_2)_{\Delta}^2 \times O_2)$ which can also be regarded as an index 2 subgroup of $Pin_2 \times Sp_2 \times O_2$, where Pin_n is a double cover of O_n corresponding to the double cover $Spin_n$ of SO_n . We have $G_{ad}^{\phi} = G_{sc}^{\phi}/\{\pm I\}$ and

$$\pi_1(\mathscr{O}) = \mathscr{A}(\mathscr{O}) = \mathbb{Z}/2\mathbb{Z}.$$

Next, we want give formulae for $\pi_1(\mathcal{O})$ and $\mathscr{A}(\mathcal{O})$ of any nilpotent orbit $\mathcal{O} = \mathcal{O}_{[d_1,...,d_N]}$ in a classical Lie algebra g.

Notation. We set

a = number of distinct odd d_i b = number of distinct even nonzero d_i c = gcd(d_1, \ldots, d_N)

Definition 3.16.

★ A group E is called a central extension of a group H by a group K, if there exists a short exact sequence

$$1 \to K \to E \to H \to 1$$

such that *K* is a central subgroup of *E*.

1

- ★ *A partition is called* rather odd, *if all of its odd parts have multiplicity one.*
- *Remark* 3.17. $\pi_1(G_{ad}, 1)$ lies in the center of G_{sc} , and the sequence

$$\rightarrow \pi_1(G_{ad}, 1) \rightarrow G_{sc} \rightarrow G \rightarrow 1$$

is exact. Consequently, G_{sc} is a central extension of G_{ad} by $\pi_1(G_{ad}, 1)$. Actually, this holds for a general Lie group (See 2.5 in [Jam08]).

Corollary 3.18 (Classical Equivariant Fundamental Groups). *For a nilpotent orbit in a classical Lie algebra,* $\pi_1(\mathcal{O})$ *and* $\mathscr{A}(\mathcal{O})$ *are given in the following table.*

Algebra	$\pi_1(\mathscr{O}_{\mathbf{d}})$	$\mathscr{A}(\mathscr{O})$
\$l _n	$\mathbb{Z}/c\mathbb{Z}$	{1}
\mathfrak{so}_{2n+1}	If d is rather odd, a central exten-	$(\mathbb{Z}/2\mathbb{Z})^{a-1}$
	sion by $\mathbb{Z}/2\mathbb{Z}$ of $(\mathbb{Z}/2\mathbb{Z})^{a-1}$; other	
	wise, $(\mathbb{Z}/2\mathbb{Z})^{a-1}$	
sp _{2n}	$(\mathbb{Z}/2\mathbb{Z})^b$	$(\mathbb{Z}/2\mathbb{Z})^b$ if all even parts have
		even multiplicity; otherwise
		$(\mathbb{Z}/2\mathbb{Z})^{b-1}$
\$0 _{2n}	If d is rather odd, a central exten-	$(\mathbb{Z}/2\mathbb{Z})^{\max\{0,a-1\}}$ if all odd parts
	sion by $\mathbb{Z}/2\mathbb{Z}$ of $(\mathbb{Z}/2\mathbb{Z})^{\max\{0,a-1\}}$;	have even multiplicity; other-
	otherwise $(\mathbb{Z}/2\mathbb{Z})^{\max\{0,a-1\}}$	wise $(\mathbb{Z}/2\mathbb{Z})^{\max\{0,a-2\}}$

Corollary 3.19. Let g be a semisimple Lie algebra of classical type and \mathcal{O} a nilpotent orbit. Then $\mathscr{A}(\mathcal{O})$ is either trivial or a finite product of $\mathbb{Z}/2\mathbb{Z}$. In particular, it is always abelian.

Proposition 3.20. Let \mathscr{O}_X be the adjoint orbit through any $X \in \mathfrak{g}$. Let $X = X_s + X_n$ be the Jordan decomposition of X. Then $\pi_1(\mathscr{O}_X)$ is isomorphic to the $G_{sc}^{X_s}$ -equivariant fundamental group $\pi_1^{G_{sc}^{X_s}}(G_{sc}^{X_s} \cdot X_n)$ through X_n . In particular, every semisimple orbit in \mathfrak{g} is simply connected.

Proof. By the uniqueness of the Jordan decomposition and 3.9, we have

$$\pi_1(\mathscr{O}_X) = G_{\mathrm{sc}}^X / (G_{\mathrm{sc}}^X)^{\circ}$$
$$= (G_{\mathrm{sc}}^{X_s})^{X_n} / ((G_{\mathrm{sc}}^{X_s})^{X_n})^{\circ}$$
$$= \pi_1^{G_{\mathrm{sc}}^{X_s}} (G_{\mathrm{sc}}^{X_s} \cdot X_n)$$

which proves the first statement. For the second assertion, see 2.3.3 in [CM93].

4. Explicit Standard Triples

Our next goal is to construct explicit standard triples in some classical Lie algebras. The main strategy is like this: Given a classical Lie algebra g, fix a choice of Cartan subalgebra h, together with a standard coordinate system on h. We will then write down all roots and root spaces of h in g and also fix a choice of positive roots. Now, given a partition **d**, which we saw corresponds to a nilpotent orbit, we construct a standard triple $\{H, X, Y\}$ such that $H \in h$, X is a sum of vectors in certain positive root spaces and Y is a sum of certain vectors in negative root spaces. First, let's have a look at some

Root Space Decompositions.

★ Let $g = \mathfrak{sl}_n$. Denote by \mathfrak{h} the set of diagonal matrices having trace zero. Recall the matrices E_{ij} having 1 at the (i, j)-th entry and zeros elsewhere. Let $e_i \in \mathfrak{h}^*$ with

$$e_i \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & h_n \end{pmatrix} = h_i$$

We get that

$$(ad H)E_{ij} = [H, E_{ij}] = (e_i(H) - e_j(H))E_{ij}$$

i.e. E_{ij} is a simultaneous eigenvector for all ad(H), with eigenvalue $e_i(H) - e_j(H)$. The $(e_i - e_j)$ -root space is spanned by E_{ij} and we get a decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{i \neq j} \mathbb{C} E_{ij}$$

★ Let $g = sp_{2n}$. Remember that g may be realised as the following set of matrices:

$$\left\{ \begin{pmatrix} Z_1 & Z_2 \\ Z_3 & -Z_1^t \end{pmatrix} \mid Z_i \in \mathbb{C}^{n \times n}, Z_2, Z_3 \text{ symmetric} \right\}$$

Consider the Cartan subalgebra h consisting of matrices of the form

$$H = \begin{pmatrix} h_1 & & & \\ & \ddots & & & \\ & & h_n & & \\ & & & -h_1 & \\ & & & \ddots & \\ & & & & -h_n \end{pmatrix}$$

Let $e_j \in \mathfrak{h}^*$ be the linear functional taking a matrix H as above to its j-th entry. Then the root system of \mathfrak{g} is given by

$$\Delta = \{\pm e_i \pm e_j \mid i \neq j\} \cup \{\pm 2e_k\}$$

As positive roots, we chose

$$\Phi = \{e_i \pm e_j, 2e_k \mid i \neq j\}$$

The root space decomposition is

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathbb{C} E_{\alpha}$$

With E_{α} defined as below. Let $\alpha \in \{\pm e_i \pm e_j, 2e_k\}$. Then E_{α} is defined as one of the following matrices:

$$E_{e_i-e_j} = E_{i,j} - E_{j+n,i+n} \qquad E_{2e_k} = E_{k,k+n} \\ E_{e_i+e_j} = E_{i,j+n} - E_{j,i+n} \qquad E_{-2e_k} = E_{k+n,k} \\ E_{-e_i-e_j} = E_{i+n,j} + E_{j+n,i}$$

We will now proceed with the construction of standard triples for \mathfrak{sl}_n and \mathfrak{sp}_{2n} . Given a partition **d**, we will break up its parts into chunks, each consisting of one or two parts. We will attach a set of positive roots to each chunk in such a way, that

positive roots attached to distinct chunks are orthogonal. Our nilpotent element *X* corresponding to **d** will be a sum of positive root vector, one for each chunk of **d**.

Recipe 1 (Type A_n). Let $g = \mathfrak{sl}_n$ and $\mathbf{d} \in \mathscr{P}(n)$. The chunks of \mathbf{d} are just its parts, each repeated as often as its multiplicity. For each chunk $\{d_i\}$, choose a block of consecutive indices $\{N_i + 1, \ldots, N_i + d_i\}$ in such a way that disjoint block are attached to distinct chunks. To every chunk $\{d_i\}$, attach the set of simple roots

$$C^+ = C^+(d_i) = \{e_{N_i+1} - e_{N_i+2}, \dots, e_{N_i+d_i-1} - e_{N_i+d_i}\}$$

Note that for $d_i = 1$, C^+ is empty. For every simple root α in $C := \bigcup_i C^+(d_i)$, let X_α be an α -root vector and write $X = \sum_{\alpha \in C} X_\alpha$. By Lemma 3.2.6 in [CM93], there is $Y = \sum_{\alpha \in C} X_{-\alpha}$ and $H \in \mathfrak{h}$ such that $\{H, X, Y\}$ is a standard triple. We have

$$H = \sum_{i} H_{C(d_i)}$$

where

$$H_{C(d_i)} = \sum_{l=1}^{d_i} (d_i - 2l + 1) E_{N_i + l, N_i + l}$$

Recipe 2 (Type C_n). Given $\mathbf{d} \in \mathscr{P}_{-1}(2n)$, break it up into chunks of the following types: pairs $\{2r + 1, 2r + 1\}$ of equal odd parts and single even parts $\{2q\}$. Now attach sets of positive (but not necessarily simple) roots to each chunk *C* as follows. If $C = \{2q\}$, choose a block $\{j + 1, \ldots, j + q\}$ of consecutive indices and let

$$C^{+} = C^{+}(2q) = \{e_{j+1} - e_{j+2}, \dots, e_{j+q-1} - e_{j+q}, 2e_{j+q}\}$$

If $C = \{2r + 1, 2r + 1\}$, choose a block $\{l + 1, l + 2r + 1\}$ of consecutive indices and let $C^+ = C^+(2r + 1, 2r + 1) = \{e_{l+1} - e_{l+1}, \dots, e_{l+2r} - e_{l+2r+1}\}$

We further require that the blocks attached to distinct chunks be disjoint. However, this does not impose any restriction. For example, if $g = sp_{20}$ and $\mathbf{d} = [6, 5^2, 2^2]$, then its chunks are $\{6\}, \{5, 5\}, \{2\}$ and $\{2\}$ and we may take

$$C^{+}(6) = \{e_1 - e_2, e_2 - e_3, 2e_3\}$$

$$C^{+}(5,5) = \{e_4 - e_5, e_5 - e_6, e_6 - e_7, e_7 - e_8\}$$

$$C^{+}(2) = \{2e_9\}$$

$$C^{+}(2) = \{2e_{10}\}$$

Let $C = \bigcup_i C^+(d_i)$ and once again define $X = \sum_{\alpha \in C} X_\alpha$. Then there is a sum $Y = \sum_{\alpha \in C} X_{-\alpha}$ and $H \in \mathfrak{h}$ such that $\{H, X, Y\}$ is a standard triple. We have

$$H = \sum_{C} H_{C}$$

where

$$H_C = \sum_{l=1}^{q} (2q - 2l + 1)(E_{j+l,j+l} - E_{n+j+l,n+j+l})$$

if $C^+ = \{e_{j+1} - e_{j+2}, \dots, e_{j+q-1} - e_{j+q}, 2e_{j+q}\}$ and

$$H_C = \sum_{m=0}^{2r} (2r - 2m)(E_{l+1+m,l+1+m} - E_{n+l+1+m,n+l+1+m})$$

if $C^+ = \{e_{l+1} - e_{l+2}, \dots, e_{l+2r} - e_{l+2r+1}\}$

Proposition 4.1. If we view \mathfrak{sp}_{2n} as a subalgebra of \mathfrak{sl}_{2n} , then the partition attached to the standard triple $\{H, X, Y\}$ is d.

Proof. See [CM93].

REFERENCES

References

- [Hum72] J.E. Humphreys. Introduction to Lie Algebras and Representation Theory. Graduate texts in mathematics. Springer, 1972. ISBN: 9780387900537. URL: https://books.google.de/books?id=TiUlAQAAIAAJ.
- [Hes76] Wim Hesselink. "Singularities in the Nilpotent Scheme of a Classical Group". In: Transactions of the American Mathematical Society 222 (1976), pp. 1–32. ISSN: 00029947. URL: http://www.jstor.org/stable/1997656 (visited on 12/11/2023).
- [Spa82] N. Spaltenstein. Classes Unipotentes et Sous-groupes de Borel. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1982. ISBN: 9783540115854. URL: https://books.google.de/books?id=14vdRwAACAAJ.
- [FH91] W. Fulton and J. Harris. Representation Theory: A First Course. Graduate texts in mathematics. Springer, 1991. ISBN: 9783540974956. URL: https: //books.google.de/books?id=jW6hngEACAAJ.
- [Bre93] G.E. Bredon. Topology and Geometry. Graduate Texts in Mathematics. Springer, 1993. ISBN: 9780387979267. URL: https://books.google.de/books?id= G74V6UzL_PUC.
- [CM93] D.H. Collingwood and W.M. McGovern. Nilpotent Orbits In Semisimple Lie Algebra: An Introduction. Mathematics series. Taylor & Francis, 1993. ISBN: 9780534188344. URL: https://books.google.de/books?id= 9qdwgNmjLEMC.
- [Jam08] Juan Pablo-Ortega James Montaldi. *Notes on lifting group actions*. MIMS EPrint, 2008.