NILPOTENT ORBITS AND THEIR FUNDAMENTAL GROUP IN THE
CLASSICAL CASE

LIVA DILER

AssTrRACT. As observed in the sl, case, nilpotent orbits are closely related to the set
Z(n) of partitions of n. This observation leads to the question if one can classify
nilpotent orbits for other Lie algebras in the same fashion. We will handle the clas-
sical case, giving a complete classification of nilpotent G,q-orbits in sl;;, 5Pp;,, 50241
and s0y,,,. Moreover, we will show that this correspondence also behaves nicely when
changing to a more interesting category than Set. Having studied the combinatorial
nature of nilpotent orbits, we will apply the results from the first section to give a for-
mula for the fundamental group 711(Cx), as well as the G,4-equivariant fundamental
group @/ (C) in the classical case. As an application, we will conclude by throwing
a quick glance at the construction of explicit standard triples for sl,; and spy,.
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1. PRELIMINARIES

Definition 1.1 (Partition). A partition of a natural number n is a tuple [dy, . .., d,] € N*
such that

Zdi=nandd12dzz~-zdn
i

Two partitions [dy, ..., dy] and [p1, ..., pn] are said to be equal, if their nonzero parts agree.
The set of all partitions of n is denoted 2 (n).

Remark 1.2.
x di#0foralli & d;,=1foralli.
* Occasionally, we will denote a partition [dy, ..., d,] simply by d.
1
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i1

Lreees ti’] to denote the partition

Definition 1.3 (Exponential Notation). We write [t
[d4,...,d,], where

th 1<j<1;

th 1+1<j<i1+1p

dj: t3 i1+l +1<j<ij+ip+is

Example 1.4. In exponential notation, we write
[4,32,23,1,0] = [4,3,3,2,2,2,1,0,...,0]
for the partition of 17.

Definition 1.5 (Very even partition). A partition [dy, ..., d,] of n is called very even, if
forall i, d; is even and has even multiplicity.

2. PartiTION TYPE CLASSIFICATIONS

Let € = 1 and consider a non-degenerate form (-, -)e on C", such that
(A,B)e = €(B,A). forall A,B € C".
Remark 2.1.
* If € = =1, (-, -)c is symplectic.
* Ife =1, (-, -)c is symmetric.
Definition 2.2 (Isometry Group). Denote by
* I((-,)e) = {x € GL;y(C) | (xA, xB)e = (A, B)e forall A, B € C™} the isometry
group of (-, -)e on C", and by
* ge = {X €sly | (XA, B)e = —(A, XB)c forall A, B € C"} its Lie algebra.
This definition is well defined: Since I((:, -)e) is a closed subgroup of the Lie group

GL,,(C), it is itself a Lie group by Cartans closed-subgroup theorem. Thus, one can
speak of its Lie algebra.

Remark 2.3.

* If e = =1, m = 2n must be even, so I({-,-)¢) = Span.

* Ife =1,1({,")e) = O, and g1 = s0,,.
If € = -1, the adjoint group of g¢ is PSp2, = Span /{£I} and its orbits coincide with
those of Spa,,. If € = 1and m is odd, then I((-, -)¢) = Oy, is the direct product its center
{£I} with the adjoint group SO, of g, so again, the orbits coincide. The problem
arises however, when € = 1 and m is even. Then the adjoint group of g becomes
PSO,, := SO,,/{«I}, and its orbits do not coincide with those of O,,. As we shall
later see, there can only be one O,,-orbit attached to a very even partition d € &2(m).
It turns out that this orbit is the union &' é Uo, él of two orbits corresponding to d.

Set
Pe(m) ={[dy,...,dn] € P(m):#{j | d; = i} is even for all i with (-1) =€}
Let g be a classical Lie algebra with standard representation on C", i.e.
X-v:=X(v)forall X € g,v € C"

If X € gisnilpotent, then we can also regard X as a nilpotent element of sl,,. Then there
is a corresponding partition d = [dy,...,d,] and moreover, belongs to a standard
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triple in sl,,. However, we can also attach to X a standard triple {H, X, Y} c g, which
is conjugate under GL, to the first triple. Denote by a the span of {H, X, Y'}.

Lemma 2.4. The nonzero d; are exactly the dimensions of the irreducible summands of the
standard representation C", regarded as an a-module.

Our next goal is to establish a bijective correspondence between nilpotent orbits in
$Pyy,, TESP. SDy;, and certain partitions of 2n, resp. m.

Let’s start with the case g = spy,,. Let (:, -) be the non-degenerate symplectic form on
C?" which is preserved by G,q. We get an a-module decomposition

c = P M(r)
r=>0

where M(r) is a finite direct sum of irreducible a-modules (i.e. representations of
slp) of highest weight r. By the above Lemma, we can read off the dimension of the
summands from the partition [dy,...,d,] of X, regarded as a matrix in slp,. For
r > 0, denote by H(r) the highest weight space in M(r). Note that

dim H(r) = mult(p,, M(r))

where p, denotes the irreducible a-module of highest weight. Now, to equip H(r)
with a bilinear form, put

(v, w), :=(v,Y"-w) forallv,w € H(r)
Lemma 2.5. The form (-, ), is symplectic (resp. symmetric) if r is even (resp. odd).
Proof. Using g-invariance, we get
(@, w)y =(0,Y" w)
= (0, ady(w))
=([o,Y]- Y, w)
=([...[0,Y]..., Y], w)

_JY"-v,w)  reven
=Y v, w) rodd

_ {—(w, v) rodd

(w,v) reven

Lemma 2.6. The form (-, ), is non-degenerate for all r.

Proof. Note that the r-weight space of C*" is (-, -)-orthogonal to its s-weight space,
whenever s # —r, by the invariance of ady relative to (-,-). Suppose r > 0. Then
H(r) has a canonical complement in the full r-weight space. It is spanned by all
vectors in this weight space lying in (Y). Since Y*! - H(r) = 0, we see that H(r) is
orthogonal to this complement with respect to (-, -),. By sl, theory, Y" - H(r) is the
lowest weight space in M(r), and it pairs non-degenerately with H(r) via (-, -). Thus,
(-, -)r is non-degenerate. O

Since the irreducible representation of highest weight  has dimension r +1 and non-
degenerate symplectic forms exist only in even dimension, we deduce the following
result.
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Corollary 2.7. The partition [dy, ..., dy] of X lies in P_1(2n), i.e. its odd parts occur with
even multiplicity.

Thus, we get a well-defined map
IT_; : {nilpotent I({:, -))-orbits in sp,, } — F_1(2n)

ﬁX[dl ..... i T [d1, ..., don]

The case g = so,, is analogous. Again, let (-, ) be the non-degenerate form on C™”
preserved by G,q. Denote by a the span of a standard triple {H, X,Y}. Consider

again the decomposition
cm = @ M(r)

r>0

and define H(r) and (:, -) exactly as above.
Lemma 2.8. The form (-, ), is symmetric (resp. symplectic) if r is even (resp. odd).

Corollary 2.9. The partition [dy,...,d,] of X lies in &1(m), i.e. its odd parts occur with
even multiplicity.

Thus, we get a well-defined map
IT; : {nilpotent I({:, -))-orbits in so,, } — Z1(m)
OXuy, iy 7 11, ]
Lemma 2.10 (Wall). The maps Il are bijections.

Proof. We will treat the case g = sp,,,, the case g = so,, is similar. To prove surjectivity,
letd =[d},...,d;] € Z_1(2n) and define a vector space

where dim V; = i;. We want to define a form (-,-) : VXV — Con V as follows:
(Vi,Vj) = 0if i # j. Moreover, if d; is odd (resp. even), we require (-, ')|v]»><vj to be
non-degenerate and symplectic (resp. symmetric). Note that such a form exists, and
is unique up to equivalence. Now for d; # 1, replace the summands V; by W; & W].’,
where W, Wj’ are isomorphic copies of V;. Now V' is a subspace of the larger vector
space

r T
& wews @ v
j:1,dj¢1 j:1,dj:1

For d; # 1, replace (-, ) on V; by a symplectic form (,-); on W; & W].’ such that W; is
paired non-degenerately with Wj’ and each of W; and W/.’ is self orthogonal. Again
up to equivalence, there is a unique way to do this. Consider now a symplectic form
(,YonW = EB/ W e W].’, which is just the orthogonal sum of the (-, -);. Using the
formulas in Lemma 7.2.1 in [Hum?72] for the action of the standard basis vectors of
sl on a finite-dimensional irreducible module, we enlarge each W; & W/.’ to a d;ij-

dimensional sl-module, whose highest weight space is W; and whose lowest weight
space is W/. This module is the direct sum of i; irreducible submodules, each of

highest weight d; — 1. It admits a non-degenerate symplectic form extending (-, -);
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and invariant under the sly-action. By Schur’s Lemma, this form is unique up to sl-
equivariant equivalence. If d; = 1, then Vi may be regarded as a trivial sl;-module
with a non-degenerate symplectic form (-, -). Now, denote by V’ the direct sum of all
these sl-modules with the inherited symplectic form. Then V"’ is isomorphic to the
standard representation C?". Clearly, sp(V) has a nilpotent element with partition
d. Hence, I1_; is surjective. For injectivity, note that any two images of slp in sp,,
giving rise to the same partition of 2n must be conjugate under an isometry of the
symplectic form. m]

Thus we get the following classification results.

Theorem 2.11 (Type By). Thereis a1 : 1-correspondence
{Nilpotent orbits in s0341} «— P1(2n +1)

Theorem 2.12 (Type Cy). Thereisa 1 : 1-correspondence
{Nilpotent orbits in spy,} «— Z_1(2n +1)

Theorem 2.13 (Gerstenhaber). There is a 1 : 1-correspondence
{Nilpotent I({:, -))-orbits in g¢} «— Pc(m)

Example 2.14.
* In soy, there are seven nilpotent orbits, namely

ﬁ[7], ﬁ[S’lZ], ﬁ[3,14], ﬁ[3,22], ﬁ[sz,l], 6[23,13], ﬁ[l7]
* In spg, there are eight nilpotent orbits, namely
Ole), Ola21, Ola12), O3, Op3), O12 121, O 141, O

However, we are not quite satisified yet; what about nilpotent orbits in so,,? We shall
classify them now.

Theorem 2.15 (Type D,,, Springer-Steinberg). Nilpotent orbits in soy, are parametrized
by partitions of 2n in which even parts occur with even multiplicity, except that very even
partitions d correspond to two orbits, denoted & and O

The reason we can’t prove this in the same fashion as for Type B, and C,, is that for
g = so,, the adjoint group G,q is isomorphic to PSO,,, and while the PSO,,-orbits
coincide with the SO,,-orbits, they do not coincide with the I((:, -)) = O,-orbits if m
is even.

Proof of Theorem 2.15. Let m = 2n and, given two actions of sl, on C™ invariant under
(-, )1, suppose they are conjugate under an element of g € I({-,-)1). Suppose that
the determinant of the matrix g is —1; then we must decide when we can replace g
by a matrix of determinant 1. Assume first, that at least one part of the partition d
corresponding to either action of sl; is odd. Then the proof of 2.10 shows that we can
find an irreducible odd-dimensional summand of C" under the first action that pairs
non-degenerately with itself under (:, -);. Multiplying ¢ by —1 on this summand S
and leaving it unchanged on the orthogonal complement of S, we obtain a new g
that also conjugates the first action to second but has determinant 1. Hence, the two
actions are already conjugate under SO,, or PSO,,. Now assume that all parts of d are
even, so they all occur with even multiplicity. Then again, the proof of 2.10 shows that
the commutant in Oy, of either sl-action is the direct product of symplectic groups,
one for each distinct part of d. Since a symplectic transformation automatically has
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determinant 1, it is impossible to replace g by any g of determinant 1. Hence, very
even partitions of m correspond to two orbits: Given a representative of one of them,
one obtains a representative of the other by conjugating by an orthogonal matrix of
determinant —1. Other partitions of m correspond to one orbit. m|

3. ToroLoGY OF NILPOTENT ORBITS

3.1. The Closure Ordering. Recall the partial ordering on the set of nilpotent orbits,
given by the Zariski closure operation: For a nilpotent element X € g, we set

Ox < Ox : = Ox C Ox/

where Oy is the Zariski-closure of 0. In this section, we want to build a bridge
to the previous partition-type classifications of nilpotent orbits in the classical Lie
algebras.

Definition 3.1 (Partial order on #(N)). Given f = [f1,...,fn],d = [d1,...,dN] €
P (N), we say that d dominates f, denoted by d > f, if
D= Y f forallk <N
1<j<k 1<j<k
We say that d covers f, if d > fand there is no partition e such that d > e > f.
This partial order is usually referd to as the dominance order.
Example 3.2. Let N = 6. We can visualize (£(6), >) as follows:
(6]
I

[5,1]
I
(4,2]
~ N
[4,2] &
~ e
[3,2,1]
~ N
5.1] 2]
. e
22,2
I
2.1

I
[1°]
Lemma 3.3. Let 04 and Oy be nilpotent orbits in s, corresponding to d and f and let
X € 04, € Or. Then d > fif and only if rank(X¥) > rank(Y*) for all k > 0.
Proof. It can be computed, that

rank(X*) = Z (di — k)

{ildizk}
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Suppose that d # f and let j be the smallest integer with

d,‘ < if,

i=1 i=1
Clearly, d; < fj. No term d; with i > j contributes to rank(X%), so rank(X%) <

rank(Y“). Conversely, suppose that rank(X*) < rank(Y*) for some k and let m be the
largest index with f,,, > k. Then

M-

rank(Y¥) = Z(fz - k),
i1

while

> (di — k) < rank(X¥).
i=1
Hence

m m
D<) fu
i=1 i=1
so thatd % f. O

Lemma 3.4 (Gerstenhaber). Let d,f € Z(N) withd = [dy,...,dn]. Then d covers f if
and only if f can be obtained from d by the following procedure: Choose an index i and let j
be the smallest index greater than i such that 0 < d; < d; —1. Assume that either d; = d; — 2
or dy = d; whenever i < k < j. Then the parts of f are obtained by from the dy by replacing
di,d]' by d;i — 1,d]' + 1.

Proof. See Lemma 6.2.4 in [CM93]. O

Theorem 3.5 (Gerstenhaber, Hesselink). Let g be a classical Lie algebra, and let d, f be
partitions of two nilpotent orbits 0y, Osin g. Then Oy > Oy if and only if d > f.

Proof. Let X € 04,Y € 0%. Since the rank of any power of a matrix is invariant under
conjugation, and since the condition that the rank of a matrix is a zariski-closed
condition (because cod(rank(-)) = N, i.e. discrete), we can deduce

O4 > O = rank(X*) > rank(Y") for all k

33
— d>f
We will prove the converse for g = sl, case and refer the reader to [Hes76] for the
more general case. Let d > f and assume that without loss of generality, d covers f.
Chose a standard triple in g with X € 04 as in 1 and define the subalgebra

02 = Zgi,
i>2
where
gi={Ze€gladyZ=1[H,Z]=iZ}

Using 1, we can see that 0% is represented by an element of q2. By a Lemma of Kostant
(Lemma 4.1.4 in [CM93]), the desired result follows. O

Note that we wrote > instead of > since for Type D, we have two orbits attached to a
very even partition which are incomparable because they have the same dimension.
But we still get:
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Corollary 3.6. Let g be a Lie algebra of A, B or C. Let d, f be partitions of two nilpotent
orbits Og, Oin g. Then Oy > O, if and only if d > f.

This tells us that the bijections established in 2.11 can be regarded as an isomorphism
in a slightly more interesting category than Set, namely the category of posets.
Moreover, (47, >) and (Z4(N), >)! are equivalent, regarded as poset category.

Example 3.7.
(1) Letg = slg. Then the diagram of nilpotent orbits in coincides with the diagram
given above.
(2) Let g = spg. We can visualize (.4, >) as follows:

Olo)

Iz
|
Ol212]
|
O21)

|
Ol

For more diagrams in the classical, as well as the exceptional case, see Chapter 4 in
[Spa82].

3.2. The Fundamental Group and </ (0). The goal of this section is to study the
fundamental group of a given nilpotent orbit &x in g. It turns out that its useful to
study the universal cover Ox of Ox. Recall that the universal covering p : Ggc — Gag
has a natural complex Lie group structure (c.f. Prop. 7.9 in [FH91]). In particular,
p is a homomorphism of Lie groups whose kernel is precisely the center Z of Gs.
Recall the following definition:

Definition 3.8 (Homogeneous Space). Let € be a locally small category which admits a
functor U : € — Set, X an object of € and G a group. Given a group homomorphism

n:G — Auty(X),
8§ g
the triple (X, n, U) is called a homogeneous space for G, if G acts transitively, i.e. the map
GxU(X) = U(X)x U(X)
(g, %) = (x,ng(x))

is surjective.

124(N) denotes the set of partitions corresponding to g via 2.11.
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Before computing the fundamental group of Ox, we shall explain how to get an
action of G4 on O: Recall that for a path-connected, locally path-connected, locally
relatively simply connected pointed space (X, x¢), the (up to isomorphism) unique
simply connected covering space is given by

X = {[f]reldl | fisa pathin X with f(0) = xo}
topologized in the usual fashion (c.f. Thm. 8.4 in [Bre93]). Now let
GxX —>X,
(g x) g x

be an action of a Lie group on a space X. Since the universal covering p : G — Gisa
surjective homomorphism, composition yields a lift of the action of G to an action of
G

GxX
l h > >1
GxX — X
We are now in the position to lift the action of G on X to an action on X. We define
CxX—X,(g,7)- (w:t gt) yt)
and get a well-defined group action. Obviously, the following diagram commutes:

GxX —— X

|

GxX — X

We will now return to the usual setting where g is a classical Lie algebra and &% a
nilpotent orbit in g.

Lemma 3.9. (1) Ox = G/ (G§§)°. Moreover, Ox is a homogeneous Gg.-space.
(2) The group 11(Ox ) is isomorphic to the component group GX /(GX)° of the centralizer
of X in Gg.

Proof. (1) By simple connectedness of G, the action is transitive, proving the
first claim. Let X’ € F := p~1({X}) where p : Ox — O is the covering map.
Consider an element Y € (GX)°. Then

p(Y - X) =Y p(X')
=Y -X
=X
Thus, the (GX)°-Orbit of X’ is a connected subspace of F, hence equal to {X’}
by discreteness of the fiber. We have (GX)° C stabx/(Gs) and get a covering
Gsc/(Gs),i)o - ﬁX

On the other hand, we have a covering
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Goce/(GL)°

I

Ox
which must in turn be covered by ¢, yielding an isomorphism of coverings

ﬁX = ) Gsc/(Ggf: °
Ox

(2) Since (GX)° acts trivially on the fiber, we get

Deck(6x) & Deck(Gac/(GX)*)
= GX/(GY)
Thus,
71(0x) = Deck(Fx)
= GX/(GY)
O

Definition 3.10 (G-equivariant Fundamental Group). Let G be a complex Lie group with
Lie algebra g and Ox a nilpotent orbit. The group

n(0x) = G /(G
is called the G-equivariant fundament group of 0x.

Note that nf (Ox) is the Deck transformation group of the largest covering space with
a G-action. By 3.9, we have

1 (0x) = GX/(GX)° = m(0x)

We write & (0x) = n?ad(ﬁx). Recall that, given a nilpotent element X € g, we
can construct a standard triple {H, X, Y} using Jacobson-Morozov and get a unique
homomorphism

¢:sh —>g
which is determined by the standard triple. We set

¢ :={Zeg|[Z,V]=0forallV € a}

where a = C(H, X, Y). Similarly, let G;Pd denote the centralizer of a in G,4. By 3.7.5
in [CM93], we have

G*/(G¥)* = G?/(G?)°
Thus, we are reduced to studying the centralizier of im(¢) in G. Assume now, that g
is classical.

Example 3.11.
* If g = sl,;, then Gs. = SL,,.
* If g = spy,, then Ggc = Span.
* If g = soy, then G is a double cover for SOy, denoted Spiny.
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Notation.
* If H is any group, let HY = ((H) denote the diagonal copy of H inside [];_; H.
* If Hy,...,H, are matrix groups, let S(]]_; H;) denote the subgroup of
17, H; consisting of m-tuples of matrices with determinant 1.

Remark 3.12. S(HX K X. . .) is not necessarily isomorphic to S(H} X K} X. . .), although
H} = H. For example if H = GL;,, we have S(H) = SL, but
S(H3) = SLf = {X € GL, | det(X) = +1}.

Theorem 3.13 (Springer-Steinberg). Let g be a classical Lie algebra and Ox a nilpotent
orbiting. Write Ox = Olg,,... 4y forsomed = [d1,...,dN] € P(N). Letr; = #{j | d; = i}
be the multiplicities and s; = #{j | d; > i}. Then

S(IT:(GL:)}) g = sl,
GS = 3 Tioaa(Spr)y X Mieuen(On)y =y
double cover of C := S([_[ievm(Sp,i)lA X Hiodd(O,,)lA) g = soN
S(ﬂi(GLri)iA)/{scalar matrices in SL,} g = sl,
oo o JGLIED g = sy,
adC g = 502741
C/{«I} g = s0p;.
In addition, the dimension of X is given by
Yisi-1 g = sl,
dim(g¥) = ISP+ 5 Yioaati 8= 5Py
1352 =3 0aati 8= s0N.
Proof. Theorem 6.1.3 in [CM93]. O

The dimension formula

dim(0x) = dim(g) — dim(g¥)
from 1.2.15 in [CM93] yields
Corollary 3.14.
n*—y,;s? g =sl,
2n2+n— % i S% + % Diodd’i 8= 502,41
2n2+n—%2isi2— I ieddti 8=5Py,
202 —n =337+ 3 Yioaati 8= 50

dim(ﬁx) =

Example 3.15.
et g = slg an = 37. en
1) L ls and 0 = O}y Th

1’1=0 S1=3
7‘223 5223
1’3:0 53:0

so by 3.13, we have
G2 = S((GLs3)%) = SL:
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This group has two connected components, though Gfd = SL3 is connected.
It follows that

3.9
() = Gie/(G)®

= GL/(GLr

= SL;/SLg,

= 7Z/27
and

A (0) = {1}
Let X € 0, then the dimension of & is given by
dim(&) = dim(g) — dim(a*)

P35 _17

=18
(2) Letg=sly, 0 = O|73). Thenrs =r; =1and r; = 0foralli # 3,7. Now
G% = S(GL1 X GLy) = GL; = C* = G?,,
which is connected. Thus
m(0) = &/(0) = {1}
(3) Let g = spyp and consider the orbit & = Oy ). Now r; = ry = 2 while
r1 = r3 = 0. We have
Gl = (024 x (022
and
G?, = GL/{=1},
SO
n(0) = o (0) = (Z)2Z)?
For X € 0, we have dim(g¥) = 20, hence dim(&) = 58.
(4) Let g = s012, 0 = O3 212. Then 3.13 tells us, that Gi is a double cover of

S((OZ)Z X (sz)i x O2) which can also be regarded as an index 2 subgroup
of Piny X Spa X Oy, where Pin, is a double cover of O,, corresponding to the

double cover Spin, of SO,. We have Gfd = G;’Z/{il} and
m1(0) = #(0) = Z|2Z.

Next, we want give formulae for 711(€) and <7 () of any nilpotent orbit & = Oj4,, . 4y
in a classical Lie algebra g.
Notation. We set
a = number of distinct odd d;
b = number of distinct even nonzero d;

c=gecd(dy, ..., dN)

Definition 3.16.
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* A group E is called a central extension of a group H by a group K, if there exists a

short exact sequence

1 K—>E—>H->1

such that K is a central subgroup of E.
* A partition is called rather odd, if all of its odd parts have multiplicity one.

Remark 3.17. 111(Gag, 1) lies in the center of G, and the sequence
1 - m1(Gag, 1) = Gse > G — 1

is exact. Consequently, G is a central extension of Gaq by 71(Gag, 1). Actually, this

holds for a general Lie group (See 2.5 in [Jam08]).

Corollary 3.18 (Classical Equivariant Fundamental Groups). For a nilpotent orbit in a

classical Lie algebra, 11(0) and <7 (0) are given in the following table.

Algebra | m1(0q) A (0)
I, Z/cZ m
$09141 If d is rather odd, a central exten- | (Z/2Z)" 1
sion by Z/2Z of (Z/2Z)*; other
wise, (Z/27)"1
$Poy, (Z/2Z) (Z/2zZ)? if all even parts have
even multiplicity; otherwise
(Z/27)P1
509, If d is rather odd, a central exten- | (Z/2Z)™10.2=1} if all odd parts
sion by Z/2Z of (2/22)™>{04-1}; | have even multiplicity; other-
otherwise (Z/2z)max{0,a-1} wise (Z/27)max{0.a-2}

Corollary 3.19. Let g be a semisimple Lie algebra of classical type and & a nilpotent orbit.

Then </ (O) is either trivial or a finite product of Z/2Z. In particular, it is always abelian.

Proposition 3.20. Let O be the adjoint orbit through any X € g. Let X = X, + X, be the

Jordan decomposition of X. Then m1(O) is isomorphic to the G -equivariant fundamental
Xs

group nlc“ (G - Xy) through X,. In particular, every semisimple orbit in g is simply

connected.

Proof. By the uniqueness of the Jordan decomposition and 3.9, we have
m1(0x) = G/ (GL)°
= (G [((G&)
= 0 (GX - X,)
which proves the first statement. For the second assertion, see 2.3.3 in [CM93]. 0

4. ExrriciT STANDARD TRIPLES

Our next goal is to construct explicit standard triples in some classical Lie algebras.
The main strategy is like this: Given a classical Lie algebra g, fix a choice of Cartan
subalgebra b, together with a standard coordinate system on ). We will then write
down all roots and root spaces of f) in g and also fix a choice of positive roots. Now,
given a partition d, which we saw corresponds to a nilpotent orbit, we construct a
standard triple {H, X, Y} such that H € b, X is a sum of vectors in certain positive
root spaces and Y is a sum of certain vectors in negative root spaces. First, let’s have
a look at some
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Root Space Decompositions.

* Let g = sl,. Denote by b the set of diagonal matrices having trace zero. Recall
the matrices E;; having 1 at the (i, j)-th entry and zeros elsewhere. Let e; € h*
with

h

We get that
(ad H)Ej; = [H, Ejj] = (ei(H) — ej(H))E;;

i.e. Ej is a simultaneous eigenvector for all ad(H), with eigenvalue e;(H) —
ej(H). The (e; — ej)-root space is spanned by E;; and we get a decomposition

g=be(PCE;
i#]
* Letg = sp,,,. Remember that g may be realised as the following set of matrices:

Z1 7> .
{(23 _Zi) | Zi € C™", Z3, Z5 symmetric}
Consider the Cartan subalgebra ) consisting of matrices of the form

hy

-y

_hn

Let e; € h" be the linear functional taking a matrix H as above to its j-th entry.
Then the root system of g is given by

A={xej+ej|i#j}U{+2e}
As positive roots, we chose
O ={e;xej,2e|i+#j}
The root space decomposition is

9= (P CE,

aeh
With E,, defined as below. Let & € {+e¢; + ¢}, 2ex}. Then E,, is defined as one
of the following matrices:
Ee;—e; = Ei,j = Ejin,i+n Ezer = Ef ktn
Eee; = Eijjon — Ejisn E_2¢, = Extn k
E—ei—ej = Ei+n,j + Ej+n,i
We will now proceed with the construction of standard triples for sl, and sp,,.

Given a partition d, we will break up its parts into chunks, each consisting of one or
two parts. We will attach a set of positive roots to each chunk in such a way, that
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positive roots attached to distinct chunks are orthogonal. Our nilpotent element X
corresponding to d will be a sum of positive root vector, one for each chunk of d.

Recipe 1 (Type Ay). Let g = sl, and d € &(n). The chunks of d are just its parts,
each repeated as often as its multiplicity. For each chunk {d;}, choose a block of
consecutive indices {N;+1, ..., N;+d;} in such a way that disjoint block are attached
to distinct chunks. To every chunk {d;}, attach the set of simple roots

C+ = C+(dl) = {eNi+1 T EN;j+2s -+ - s ENj+di -1 — eN,'+d,‘}
Note that for d; = 1, C* is empty. For every simple root a in C := | J; C*(d;), let X,

be an a-root vector and write X = ) ,cc Xo. By Lemma 3.2.6 in [CM93], there is
Y = Y 4ec X-o and H € b such that {H, X, Y} is a standard triple. We have

H = ZHC(dn
i

di

Hew, = Z(di =21+ 1)EN;41,N;41
=

where

Recipe 2 (Type Cy). Givend € &_1(2n), break it up into chunks of the following types:
pairs {2r + 1,2r + 1} of equal odd parts and single even parts {29}. Now attach sets
of positive (but not necessarily simple) roots to each chunk C as follows. If C = {24},
choose ablock {j +1,...,j + g} of consecutive indices and let

Cr=C"(29) ={ejr1 —€j+2,---,€j+g-1 — €j4g, 2€j1q}
If C = {2r +1,2r + 1}, choose a block {I + 1,1 + 2r + 1} of consecutive indices and let
Ct=C"(2r+1,2r+1) ={ej41 — €141, - -, €1+2r — €142r41}

We further require that the blocks attached to distinct chunks be disjoint. However,
this does not impose any restriction. For example, if g = spyg and d = [6, 52,22], then
its chunks are {6}, {5, 5}, {2} and {2} and we may take

C™(6) = {e1 — ez, e2 — €3, 2e3}

C"(5,5) = {es — 5,5 — es, 66 — €7, €7 — €3}
C*(2) = {2e9}
C*(2) = {2e10}

Let C = |J; C*(d;) and once again define X = } ,cc Xo. Then there isasum Y =
Yaec X-a and H € b such that {H, X, Y} is a standard triple. We have

H:ZHC
C

where
q
Hc = Z(Zq -2l + 1)(Ej+l,j+l - En+j+l,n+j+l)
I=1
if C+ = {€j+1 - €j+2, ey €j+q_1 - €j+q123j+q} and
2r
Hc = Z(zr - 27’”)(El+1+rrz,l+1+m - En+l+1+m,n+l+l+m)

m=0

if C* = {ery1 —erv2, ..., €142r — €142r41}
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Proposition 4.1. If we view sy, as a subalgebra of sly,, then the partition attached to the
standard triple {H, X, Y} is d.

Proof. See [CM93]. |
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