
Classification of Nilpotent Orbits

Marcel Eichberg

December 2023

1 Introduction

The goal of this exposition is to prove that the number of nilpotent orbits in a
lie algebra g is finite. We begin by showing there is a one to one correspondence
between certain conjugacy classes of the adjoint action and nonzero nilpotent or-
bits. We further show that there is also a one to one correspondence between the
aforementioned conjugacy classes and certain semisimple orbits, these semisim-
ple orbits will ultimately be shown to be finite via their corresponding weighted
Dynkin diagrams.

From now on, we let g be a Lie algebra and h its Cartan subalgebra.

Definition 1.1. A standard triple in g is a three dimensional subalgebra
isomorphic to sl2(C).

Remark 1.2. Any root vector Xα for a given root α yields a standard triple,
denoted {Hα, Yα, Xα} such that

• [Hα, Yα] = −2Yα

• [Hα, Xα] = 2Xα

• [Xα, Yα] = Hα

Definition 1.3. We denote by Atriple the set of Gad conjugacy classes of stan-
dard triples in g.
Define Ω : Atriple −→ {non zero nilpotent orbits in g } via Ω({H,X, Y }) = OX

2 Bijectivity of Ω

2.1 Surjectivity

Theorem 2.1. (Jacobson-Morozov) if g is complex semisimple, X a nonzero
nilpotent element then there exists a standard triple {H,X, Y } such that X cor-

responds to

(
0 1
0 0

)
∈ sl2(C). We call X the nilpositive element.
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Proof. By induction on the dimension of g. If dimg = 3, then g is isomorphic
to sl2(C) and the result holds true. Assume now that the dimension is greater
than three. If X were to be contained in a proper subalgebra of g, then by
inductive hypothesis the statement holds true, so assume that X does not lie in
any proper subalgebra of g.
denoting by κ the Killing form of g and gX the centralizer of X in g, we know by
[1, Lemma 1.3.9, page 13] that κ(X, gX) = 0. This implies that X ∈ (gX)⊥ =
[g, X].
Choose an H ′ ∈ g such that [H ′, X] = 2X, this H ′ can be assumed to be
semisimple, since any nilpotent element acting on CX has eigenvalues 0 and
the Jordan decomposition of H ′ = H ′

s + H ′
n implies that [H ′

S , X] = 2X and
[H ′

n, X] = 0.
Picking H = H ′

s, we claim that H ∈ [g, X]

Proof. of claim: assumeH ̸∈ [g, X] i.e κ(H, gX) ̸= 0. We consider the eigenspace
decomposition of gX , this exists due to the facts that adH leaves gX invariant
and acts semisimply, denote this decomposition as

gX = gX0 ⊕
⊕

gXτi (1)

notice that gX0 = {Z ∈ gX |[H,Z] = 0}, allowing us to rewrite the decomposition

gX = (gX)H ⊕
⊕

gXτi . (2)

We can find some Z ∈ (gX)H such that κ(H,Z) ̸= 0, this follows from the fact
that the Killing form is non-degenerate and that for any Zi ∈ gτi

0 = κ(H, [H,Zi]) = κ(H, τiZi) = τiκ(H,Zi). (3)

It is evident that given such a Z ∈ (gX)H , the semisimple part Zs of Z is not
trivial, since otherwise Z is nilpotent and therefore κ(H,Z) = 0.
By [1], we know that gZs is reductive and therefore [gZs , gZs ] is a semisimple
proper subalgebra of g.
This is ultimately a contradiction to X not being in any proper subalgebra of
g, observe that both H,X ∈ gZs , i.e [H,X] = 2X ∈ [gZs , gZs ].
In conclusion, H ∈ [g, X], which proves our claim.

Pick some Y ∈ g such that H = [X,Y ] and consider the eigenspace decom-
position of g =

⊕
gλi

. This allows us to write Y =
⊕

Yi for Yi ∈ gλi
.

Keeping in mind that H ∈ g0, and by the theory of sl2(C)

H = [X,Y ] = [H,Y−2] =⇒ [H,Y ] = −2Y. (4)

Therefore {H,X, Y } is a standard triple and the map Ω is surjective.
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2.2 Injectivity

Remark 2.2. • The restriction of κ on gH is non degenerate

• gX admits a decomposition of the form
⊕
i≥0

gXi

Lemma 2.3. Any two standard triples H,X, Y and H,X, Y ′ with identical
H,X have identical Y .

Proof. Y − Y ′ is evidently in the −2-eigenspace of the adH , however it also in
gX , since [X,Y − Y ′] = [X,Y ] − [X,Y ′] = H − H = 0. By the remark above
we know that gX ∩ g−2 = {0}. This completes the proof

The following results and definitions are important for the injectivity of Ω,
however are above the scope of this presentation and deal with the theory of
Lie groups and their geometric aspects, a detailed account of the theory can be
found in [2]

Lemma 2.4. let X be a nonzero nilpotent element of a semisimple g, defining
uX = gX ∩ [g, X], it is an adH-invariant nilpotent ideal of gX and uX =

⊕
i>0

gXi .

Lemma 2.5. Denoting with UX the lie algebra of uX , there is a diffeomorphism
between uX and UX and H + uX = UXH

Theorem 2.6. (Kostant) For any two standard triples {H ′, X, Y ′} and {H,X, Y }
with the same nilpositive element X there exists an x ∈ UX such that xH =
H ′, xX = X,xY = Y ′, i.e Ω is injective.

3 The Distinguished Semisimple Orbits

Definition 3.1. Define the map Y : Atriple −→ {semisimple orbits} via
Y({H,X, Y }) = OH

Definition 3.2. We denote by Sdist = Image(Y) the distinguished semisim-
ple orbits

Theorem 3.3. The map Y is a one to one correspondence between Atriple and
Sdist

3.1 Y is injective

Theorem 3.4. (Mal’cev) Any two standard triples with the same neutral ele-
ment H are conjugate by an element of (GH

ad)
◦

Proof. Denote the two standard triples with {H,X, Y } and {H,X ′, Y ′} and
write g =

⊕
i∈Z

gi.
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Define ρ = {Z ∈ g2|gZ ∩ g−2 = 0} By the following computation it suffices to
show that (GH

ad)
◦ acts transitively on ρ:

Z ∈ ρ ⇐⇒ gZ ∩ g−2 = 0 ⇐⇒ x(gZ ∩ g−2) ⇐⇒ gxZ ∩ xg−2 = 0

⇐⇒ gxZ ∩ g−2 = 0 ⇐⇒ xZ ∈ ρ

claim 1: ρ is path connected and open in g2

Proof. of claim 1: Define T : g2 −→ Hom(g−2, g0) via T (Z) = adZ .
We notice that Image(T (z)) = [Z, g−2] and Kernel(T (z)) = g−2 ∩ gZ , thus

Z ∈ ρ ⇐⇒ g−2 ∩ gZ = 0 ⇐⇒ Kernel(T (z)) = 0

⇐⇒ dim(Image(T (z)) = dim(g−2)

In conclusion, T (Z) must have full rank and is thus Zariski open in g−2.
It is path connected due to the fact that C \ {a1, ..., an} is path connected and
there are only finitely many λ such that λA+ (1− λ)B ̸∈ ρ.

claim 2: Each (Gad
H)◦ orbit in ρ is open and closed.

Proof. of claim 2: if Z ⊂ g−2, then [gZ , Z] = 0, thus

0 = κ([gZ ∩ g0, Z, g−2] = κ(gZ ∩ g0, [Z, g−2].

Meaning [Z, g−2] ∈ (gZ ∩ g0)
⊥ ∩ g0, allowing us to compute that

dim((Gad
H)◦Z) = dim(g0 − dim(g0) ∩ gZ) ≥ dim(g0)− dim(g0) + dim(g2) = dim(g2)

where the last inequality follows from the dimension formula for vector spaces
and the computation above.
In conclusion, every orbit in ρ has full dimension, i.e it is open. Since the
complement of an orbit is the union of orbits, they are also closed.

ρ is therefore a single orbit since it is path connected and the proof is com-
plete.

4 Weighted Dynkin Diagrams

Fix a positive root system Φ+ and a base of simple roots ∆

Definition 4.1. The Borel subalgebra containing h is b = h⊕
⊕

α∈Φ+

gα. De-

note by b the analog of the Borel subalgebra but going over the negative roots.

Definition 4.2. We call a Z ∈ h ∆-dominant if α(Z) is real and non-negative
for all α ∈ ∆.
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By the non-degeneracy of κ, we can identify any H ∈ h with an H∗ ∈ h∗.
Coupled with the fact that ∆ is a basis of h∗, the values of α(H) for α ∈ ∆
completely determine H.
Since g =

⊕
i∈Z

gi, H is both ∆-dominant and integral, therefore α(H) ∈ N for all

α ∈ ∆.
The fact that Y ∈ g−2 implies that [Xα, Y ] ∈ b

• if [Xα, Y ] = 0, then Xα ∈ gY , i.e. α(H) = 0

• if [Xα, Y ] ̸= 0, then the adH -eigenvalue of [Xα, Y ] = α(H) − 2 therefore
α(H)− 2 ∈ −N. This in total implies that α(H) = {0, 1, 2}.

If we label every node of the Dynkin diagram of g with the eigenvalue α(H)
on the corresponding root space gα, we obtain at most 3rankg different Dynkin
diagrams, called the weighed Dynkin diagrams of OX denoted by ∆(OX).

Theorem 4.3. (Kostant) The weighted Dynkin diagrams of a nilpotent orbit is
an invariant, i.e. ∆(O′) = ∆(O) ⇐⇒ O = O′ for any two nilpotent O,O′

Proof. ” ⇐ ” is evident
” ⇒ if ∆(O′) = ∆(O), then there exist two standard triples {H,X, Y } and
{H ′, X ′, Y ′} with nilpotent X,X ′. The neutral elements can be chosen to be
identical, thus by Mal’cev’s theorem we can choose Y and Y ′ to be conjugate.

Remark 4.4. While the above chapters indeed give us an upper bound for the
number of nilpotent orbits, it is very coarse and not easy to work with. For
example the number of nilpotent orbits in E8 is 70, but 38 is a much bigger
number.

5 Examples

In this section, we will focus on sln. While the example does not follow the
theory explained above, it gives us the exact number of nilpotent orbits in sln
and is a very enlightening example.

5.1 Counting Orbits in sln

Definition 5.1. let n ∈ N, a partition of n is a tuple [d1, ..., dk] such that

• d1 ≥ d2 ≥ .... ≥ dk ≥ 0

•
∑

di = n

We say two partitions [d1, .., dk] and [p1, .., pn] are equivalent if and only if pi =
di for all pi, di > 0

Definition 5.2. the set of all partitions of n is denoted by P(n)
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We recall the definition of a Jordan block of type i from basic linear algebra:
Construct the i× i matrix of the form

Jdi =


0 1 ...

0
. . . 1 ...

...
. . . 1

0 . . . 0 0


Let [d1, . . . , dk] ∈ P(n) such that dk > 0, we can construct the Jordan normal
form associated to the partition via:

X[d1,...,dk] =

Jd1 0 . . .
...

. . .
...

0 . . . Jdk


This matrix is both nilpotent and has trace zero, therefore it is a nilpotent
element of sln. Notice by the uniqueness of the Jordan normal form that any
two distinct partitions of n define disjoint nilpotent orbits. Thus we can conclude

|P(n)| ≤ |{nilpotent orbits in sln}|.

To show the other inequality, ≥, it suffices to recall that any element X can be
brought to its unique Jordan normal form. If X is chosen to be nilpotent, then
the eigenvalues of X are all 0, however the eigenvalues of an upper triangular
matrix are the elements on the diagonal. This concludes the statement.

5.2 sl4 explicitly

We count how many different partitions the number 4 has, giving us

P(4) = {[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]} (5)

This gives us 5 distinct nilpotent orbits, the most obvious representatives being


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


The next question we could try answering is how big is the dimension of each
of those orbits? While the dimension corresponding to the orbit of [1, 1, 1, 1] is
evidently zero, it is unclear which (if any) of the non-trivial Orbits are maxi-
mal/minimal and what their dimensions might be.
It can be shown that there exists a non-trivial nilpotent orbit of minimal dimen-
sion and that its dimension is 1+|{positive roots not orthogonal to the highest root}|
[1], applied to our case of sl4, we obtain that the dimension is 6.
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5.3 Examples of Weighted Dynkin Diagrams

We assume some knowledge of Dynkin diagrams and conclude this exposition by
giving out some examples of the weighted Dynkin diagrams for some of common
Lie algebras.

We’ve seen by [3, Theorem 3.1] the exact classification of Dynkin diagrams
for irreducible root systems up to isomorphism. Replacing in Al, Bl, Cl, Dl and
El the position of each node with it’s potential Eigenvalue, we obtain

Al, l ≥ 1
◦

{0,1,2}
◦

{0,1,2} . . . ◦
{0,1,2}

Bl, l ≥ 2
◦

{0,1,2}
◦

{0,1,2} . . . ◦
{0,1,2}

◦
{0,1,2}

⟩

Cl, l ≥ 3
◦

{0,1,2}
◦

{0,1,2} . . . ◦
{0,1,2}

◦
{0,1,2}

⟨

Dl, l ≥ 4
◦

{0,1,2}
◦

{0,1,2} . . . ◦
{0,1,2}

◦
{0,1,2}

◦
{0,1,2}

El, l = 6, 7, 8
◦

{0,1,2}
◦

{0,1,2}
◦

{0,1,2}

◦{0,1,2}

. . . ◦
{0,1,2}

Example 5.3. We concretely draw A2, B2, C3 and D4.

A2
◦

{0,1,2}
◦

{0,1,2}

B2
◦

{0,1,2}
◦

{0,1,2}
⟩

C2
◦

{0,1,2}
◦

{0,1,2}
◦

{0,1,2}
⟨

D4
◦

{0,1,2}
◦

{0,1,2}

◦
{0,1,2}

◦
{0,1,2}
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