
DYNKIN CLASSIFICATIONS

EMANUEL ROTH

In this seminar, we aim to categorize irreducible root systems, up to isomorphism,
through Dynkin diagrams. Our goal is to prove that every root system Φ, of rank l, is
characterized precisely, up to isomorphism, by a Dynkin diagram of the form Al, Bl, Cl,
Dl, El, Fl, Gl, these Dynkin diagrams will be defined later in this handout.

To achieve this, we follow [Hum72, Section 11], and sketch a proof of the classification
theorem [Hum72, Theorem 11.4] at the end.

Notation: k is an algebraically closed field of characteristic 0.
Warning: The numbering and ordering in this handout may not be the same as that

of my presentation.

1. Root systems

Definition 1.1. Let V be a rational finite-dimensional vector space, of rank l, with
inner-product (_,_). A subset Φ ⊂ V is a (reduced) root system, of rank l, if Φ fulfills
the following:

(i) Φ is finite, does not contain 0, and spans V .
(ii) For all α ∈ Φ, the integer multiples of α in Φ are precisely α ∈ Φ and −α ∈ Φ.

For any nonzero element α ∈ V , we define the reflection sα : V → V :

sα(x) = x− 2 (x, α)
(α, α)α, (1)

along the axis of α.
(iii) For every α ∈ Φ, we have that sα preserves Φ, i.e., sα(Φ) ⊂ Φ.
(iv) For all α, β ∈ Φ, sα(β) − β is an integer multiple of α.

What is this definition useful for, and what does it model? As a reminder from Till’s
talk, this is the main example of a root system.

Theorem 1.1. Let t be a Cartan subalgebra of a semisimple Lie algebra g, and let Φ(g, t)
be the roots of the corresponding root space decomposition of g.

Φ(g, t) is contained in a rational vector space V , whose extension of scalars to k is
isomorphic to t∨ = Homk(t, k). We equip V with an inner-product (_,_) induced by the
Killing-form κ of g.

We claim that Φ(g, t) is a root system of V , with respect to (_,_).

Any constructions and statements on abstract root systems can then be applied to the
special case of a semisimple Lie algebra g. This leads to a rich theory of Lie algebras, Lie
groups, and algebraic groups, that is further explored in [Hum72], [Kna88], and more.

Unless otherwise stated, Φ ⊂ V is a root system, with respect to (_,_).

Definition 1.2. (a) A choice of half the roots Φ+ ⊂ Φ is a set of positive roots of Φ,
if we have the following:
(i) For all α ∈ Φ, we have α ∈ Φ+ or −α ∈ Φ+, but never both.
(ii) For all α, β ∈ Φ+, such that α+ β ∈ Φ, we have α+ β ∈ Φ+.
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(b) Given positive roots Φ+ ⊂ Φ, there exists a unique subset △ ⊂ Φ+ of simple
roots, such that △ fulfills the following:
(i) Every root in Φ+ \ △ is a nonnegative integer linear combination of roots in

△.
(ii) △ is a minimal set that fulfills (i), with respect to inclusion. Equivalently,

△ forms a basis of V .

Example 1.1. If we imagine V to be Q2 with the standard euclidean inner-product
(_,_), the following depict root systems:

α1

α2

α1

α2

(2)

Left: Root system A1 ×A1, of the Lie algebra sl(2, k) ⊕ sl(2, k).
Right: Root system A2, of the Lie algebra sl(3, k).

The dashed arrows depict a valid choice of positive roots, and the labeled dashed
arrows are the corresponding simple roots.

Remark 1.1. (a) W = ⟨sα|α ∈ Φ⟩ ⊂ AutQ(V ) is the Weyl group of Φ, which is finite
and acts transitively on the Weyl chambers of Φ.

(b) For α, β ∈ Φ, denote α∨ = 2α
(α,α) ∈ V as the dual root, and ⟨β, α⟩ = (β, α∨) ∈ Z.

(c) For α, β ∈ Φ, denote the induced norm of (_,_) by ||_||, then the angle formula
||α||||β|| cos(θ) = (α, β) holds, where θ describes the angle between α and β.

With some manipulation, one proves that ⟨β, α⟩⟨α, β⟩ = 4(cos(θ)2). As cos(θ) ∈
[0, 1], and as ⟨β, α⟩, ⟨α, β⟩ ∈ Z, it is easy to verify that ⟨α, β⟩ ∈ {−3,−2,−1, 0, 1, 2, 3}.

Assuming α ̸= ±β, and ||β|| ≥ ||α||, we obtain the only possibilities, as seen in
[Hum72, Section 9.4]:

⟨α, β⟩ ⟨β, α⟩ θ ||β||2/||α||2
0 0 π/2 no relation
1 1 π/3 1
-1 -1 2π/3 1
1 2 π/4 2
-1 -2 3π/4 2
1 3 π/6 3
-1 -3 5π/6 3

(3)

(d) For positive roots Φ+ ⊂ Φ, with simple roots △, and for any α, β ∈ △, α ̸= β, we
find that ⟨α, β⟩, (α, β) ≤ 0, i.e., the angle between α and β is obtuse, or a right
angle. This is proven in [Hum72, Lemma 10.1].

Thus, only the odd rows of (3) occur for ⟨α, β⟩ and ⟨β, α⟩.

2. Cartan matrices

From Philipp’s talk, we learned about Cartan matrices and Dynkin diagrams.
As usual, Φ ⊂ V is a root system, with respect to (_,_), with fixed positive roots

Φ+ and simple roots △ = {α1, . . . , αl}. Φ′ ⊂ V ′, is a second root system with Φ′+, and
△′ = {α′

1, . . . , α
′
l′}.

Definition 2.1. (a) The matrix C = (⟨αi, αj⟩)i,j is called a Cartan matrix of Φ.



DYNKIN CLASSIFICATIONS 3

The entries of C only takes values in −3,−2,−1, 0, 2, where precisely only the
diagonals of C take the value 2, this is due to (3).

Taking a different ordering of △ results in a different matrix C, i.e., C is not
uniquely determined by Φ alone.

In the same situation as (a), we can try to encode ⟨αi, αj⟩ through edges and nodes.
(b) Fix {αi, αj}, i ̸= j, and observe the nodes ◦ ◦, where αi corresponds to one node,

and αj to the other. We assign edges to ◦ ◦ as follows:
(i) If ⟨αi, αj⟩ = 0, i.e., they are orthogonal, we assign no edges.
(ii) If row three occurs in (3), assign one edge.
(iii) If row five occurs in (3), assign two edges.
(iv) If row seven occurs in (3), assign three edges.
By repeating the same process for all {αi, αj}i,j=1,...,l,i ̸=j , we obtain a graph with
l nodes and some edges, this is the coexeter graph of Φ.

Unlike Cartan matrices, this does not depend on the choice of positive roots
and labeling of simple roots.

Can a Cartan matrix of Φ be recovered from the coxeter graph, when the nodes are
unlabeled? Almost.

(c) In the situation of the nodes in (b), where we have two nodes with a double or
triple edge, corresponding to αi and αj , we still do not know which simple root
has the longer norm, as seen in rows three and five of (3). By adding to such
double and triple edges an arrow pointing to the node with the root with the
smaller norm, we have enough information to find a Cartan matrix of Φ.

The coexeter graph of Φ, with these arrows, is called the Dynkin diagram of Φ,
and does not depend on the choice of positive roots and labeling of simple roots.

Example 2.1. Observe the root system Φ = A2, as seen in the right diagram of (2) in
Example 1.1, we calculate a Cartan matrix C, and the Dynkin diagram:

C =
(

2 −1
−1 2

)
, ◦◦ . (4)

Why do we study Cartan matrices and Dynkin diagrams? What does it encode about
Φ, and how does it help characterize Φ up to isomorphism? These questions, which are
important for the classification theorem, are addressed in the following lemma.
Lemma 2.1. Let there be a bijection αi 7→ α′

i between simple roots in △ and △′,
preserving the Cartan matrices of Φ and Φ′, i.e., for all i, j = 1, . . . , l = l′, we have
⟨αi, αj⟩ = ⟨α′

i, α
′
j⟩′. This bijection extends uniquely to an isomorphism φ : V → V ′ of

vector spaces such that:
(i) For all α, β ∈ Φ, we have ⟨φ(α), φ(β)⟩′ = ⟨α, β⟩.

(ii) For all α ∈ Φ, we have φ ◦ sα = s′
φ(α) ◦ φ.

Proof. See [Hum72, Proposition 11.1]. □

The properties (i) and (ii) in Lemma 2.1 formalize the concept of two root systems
being isomorphic to each other. It is clear that two isomorphic root systems share the
same Cartan matrices and Dynkin diagrams.

In these isomorphism classes, the labeling of the simple roots αi becomes irrelevant,
and a Cartan matrix C determines an isomorphism class of root systems. Furthermore,
isomorphism classes of root systems and Dynkin diagrams are in bijection with each
other.
Definition 2.2. A root system Φ of V is called irreducible if there exists no orthogonal
partition of Φ, i.e., no A ⊔ B = Φ, such that for all α ∈ A and β ∈ B, we have
⟨α, β⟩ = (α, β) = 0. Equivalently, Φ is irreducible if its coexeter graph is connected.



4 EMANUEL ROTH

Remark 2.1. Every root system Φ of V decomposes into disjoint subsets Φ = Φ1 ⊔ . . .⊔
Φt, where each Φi is an orthogonal component of Φ, and where for all i = 1, . . . , t, Φi is
an irreducible root system of a subspace Vi of V , such that V = V1 ⊕ . . .⊕ Vt.

Any choice of positive roots Φ+
i , for all i = 1, . . . , t, corresponds to a choice of positive

roots Φ+ = Φ+
1 ⊔. . .⊔Φ+

t of Φ. Furthermore, with respect to these positive roots, we have
for the simple roots △i of Φi, i = 1, . . . , t, that the simple roots of Φ are △ = △1⊔. . .⊔△t.

Let us apply these statements to semisimple Lie algebras g, through the use of Theorem
1.1. As a reminder, g is simple if g admits no nontrivial proper ideals. By fixing a Cartan
subalgebra t of g, we induce a root system Φ(g, t) using Theorem 1.1. By observing the
root space decomposition of g, with respect to Φ(g, t), it can be shown that g being simple
is equivalent to Φ(g, t) being irreducible.

Every semisimple Lie algebra g is the direct sum of nontrivial proper ideals g = g1 ⊕
. . .⊕gt, furthermore, t is the direct sum of Cartan subalgebra ti of gi, i.e., t = t1 ⊕ . . .⊕ tt.

We have that Φ(g, t), its positive roots, and its simple roots, respectively, are dis-
joint unions of Φ(gi, ti), their positive roots, and their simple roots, for all i = 1, . . . , t,
respectively.

The classification theorem of irreducible root systems, which is Theorem 3.1, will
thus also characterize simple Lie algebras g up to isomorphism, and thus also indirectly
semisimple Lie algebras, as they are finite direct sums of simple Lie algebras.

3. The classification theorem

Theorem 3.1. Let Φ be an irreducible root system of V , of rank l, with respect to the
inner-product (_,_). The Dynkin diagram of Φ, which characterizes Φ up to isomor-
phism, must be one of the following:

Al, l ≥ 1 ◦
1

◦
2 . . . ◦

l

Bl, l ≥ 2 ◦
1

◦
2 . . . ◦

l−1
◦
l

⟩

Cl, l ≥ 3 ◦
1

◦
2 . . . ◦

l−1
◦
l

⟨

Dl, l ≥ 4 ◦
1

◦
2 . . . ◦

l−2

◦
l−1

◦
l

El, l = 6, 7, 8 ◦
1

◦
3

◦
4

◦2

. . . ◦
l

F4
◦
1

◦
2

⟩ ◦
3

◦
4

G2 ◦
1

⟩ ◦
2 (5)

The restrictions on l are chosen such that no Dynkin diagram appears more than once.

Remark 3.1. Al corresponds to root systems of sl(l + 1, k), Bl corresponds to root
systems of so(2l + 1, k), Cl corresponds to root systems of sp(2l, k), Dl corresponds to
root systems of so(2l, k). The diagrams El, F4, and G2 are special cases, but also have
corresponding exotic simple Lie algebras. For example, F4 is the Dynkin diagram of the
Lie algebra f4, which is the complexification of a Lie algebra of a Lie group, also named
F4, which is the isometry group of a projective space of octonions!
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Due to the isomorphisms of diagrams A1 ≃ B1 ≃ C1, we follow that sl(2, k) ≃
so(3, k) ≃ sp(2, k). Similar isomorphisms of Lie algebras are induced from the isomor-
phisms of diagrams B2 ≃ C2, D2 ≃ A1 ×A1, D3 ≃ A3.

Proof. This will be a rather long, multistep proof, so we will start with some simplifi-
cations. Firstly, let us only classify the underlying coexeter graphs of irreducible root
systems. Achieving this would almost provide the proof, where we would only then have
to make considerations about Bl and Cl, which are the only differing Dynkin diagrams
with the same underlying coexeter graphs.

By only considering coexeter graphs, we firstly disregard the lengths of roots, and only
consider angles between roots, so we firstly work with normed vectors. The following
definition should model vectors that are normed vectors of simple roots in △.

Definition 3.1. Let n ≤ l, If A = {v1, . . . , vn} ⊂ V , such that:
(i) A is linearly independent.
(ii) For all i = 1, . . . , n, we have ||vi|| = 1.
(iii) For all i, j = 1, . . . , n, i ̸= j, we have (vi, vj) ≤ 0.
(iv) For all i, j = 1, . . . , n, i ̸= j, we have 4(vi, vj)2 = 0, 1, 2, 3.

We then call A admissible.

Note that simple roots fulfill (iii) due to (d) of Remark 1.1, and they fulfill (iv) due to
(c) of Remark 1.1, and its table in (3).

We denote the coexeter graph induced by A as ΓA. Note that subsets A′ of admissible
sets A are admissible, and thus generate coexeter subgraphs ΓA′ of ΓA.

Let A = {v1, . . . , vn} ⊂ V be an admissible set.
Claim 1: The number of two nodes in ΓA with at least an edge between them is less

than n.
Proof of Claim 1: Let v =

∑n
i=1 vi, v is nonzero as A is linearly independent. If there

is an edge between the nodes of vi and vj , i ̸= j, we equivalently have 4(vi, vj)2 = 1, 2, 3,
due to (c) of Remark 1.1, which is equivalent to 2(vi, vj) ≤ −1. Hence, due to:

0 < (v, v) = n+ 2
∑
i<j≤n

(vi, vj), (6)

the claim follows. #
Claim 2: ΓA contains no cycles (or loops).
Proof of Claim 2: If there exists an admissible subset A′ ⊂ A, whose subgraph ΓA′ of

ΓA is a cycle, A′ would violate Claim 1, as A′ has the same number of nodes as edges.
Thus, the claim follows. #

Claim 3: No more than three edges can originate from a node of ΓA.
Proof of Claim 3: Fix a vector v ∈ A, and let {a1, . . . , as} ⊂ A, s ≤ n, be precisely

the vectors whose nodes have an edge with v in ΓA. Since ΓA cannot contain cycles, for
all i, j = 1, . . . , s, i ̸= j, ai and aj do not share an edge, and thus (ai, aj) = 0.

We find a0 ∈ spank(v, a1, . . . as), a0 ⊥ spank(a1, . . . as), ||a0|| = 1. Then due to
(v, a0) ̸= 0, we have:(

v =
s∑
i=0

(v, ai)ai

)
⇒
(

s∑
i=0

(v, ai)2 = (v, v) = 1
)

⇒
(

s∑
i=1

4(v, ai)2 < 4
)
. (7)

Just as in the proof of Claim 1, the edges between v and ai imply that 4(v, ai)2 = 1, 2, 3,
and hence s ≤ 3. Thus, there can only be at most three edges going to the node in ΓA
corresponding to v. #

As a consequence, the only connected coexeter graph ΓA with a triple edge is the
underlying graph of G2.
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Claim 4: Let s ≤ n, B = {v1, . . . , vs} ⊂ A be a subset, whose subgraph ΓB of ΓA is of
the form As, and let v =

∑s
i=1 vi. We claim that A′ = (A \B) ∪ {v} is admissible.

Proof of Claim 4: By construction, A′ is clearly linearly independent, so we have (i)
of Definition 3.1.

To check that ||v|| = 1, to verify (ii) of Definition 3.1, we note that the only non-
orthogonal pairs of vectors inB are {vi, vi+1}, for i = 1, . . . , s−1, and we have 2(vi, vi+1) =
−1, then:

(v, v) = s+ 2
∑
i<j≤s

(vi, vj) = s− (s− 1) = 1. (8)

For all a ∈ A′, a ̸= v, if a is orthogonal to v, then (iii) and (iv) of Definition 3.1 follow.
Otherwise, we have (a, v) < 0, as A is admissible. The fact that ΓA contains no cycles,

from Claim 3, ensures that a can only have edges going into at most one element of B =
{v1, . . . , vs}. Hence, there exists one unique i = 1, . . . , s, such that (a, v) = (a, vi) < 0.
From this, it follows that 4(a, v)2 = 1, 2, 3, due to the admissibility of A, and (iii) and
(iv) of Definition 3.1 follow. #

Note that in the situation of Claim 4, we obtain ΓA′ from ΓA by collapsing the subgraph
ΓB ≃ As of ΓA into a single node ◦, corresponding to v. Any edge between ΓA \ ΓB and
ΓB is then replaced by an edge between ΓA \ ΓB and the node of v.

Claim 5: ΓA contains no subgraph of the form:

5(a) ◦
1

◦
2 . . . ◦

l−1
◦
l

5(b)
◦
1

◦
2

◦
3 . . . ◦

l−2

◦
l−1

◦
l

5(c) ◦
1

◦
2 . . . ◦

l−2

◦
l−1

◦
l (9)

Proof of Claim 5: Assuming to the contrary, from each of these coexeter subgraphs, we
form a new coexeter graph by collapsing their middle sections ◦ − . . .− ◦ to a single node
◦. These new graphs correspond to admissible sets, due to Claim 4, with a node in the
middle with 4 edges, in contradiction to Claim 3. Hence, the claim follows. #

Claim 6: For any admissible set A with a connected graph ΓA, ΓA is of the form 6(a)
Al, or 6(b) G2 (its underlying graph), or:

6(c) ◦
v1

. . . ◦
vp

◦
aq

. . . ◦
a1

6(d) ◦
v1

◦
vp−1

. . . ◦
ψ

◦
ar−1

. . . ◦
a1

◦
bq−1

. . . ◦
b1 (10)

Proof of Claim 6: Assuming ΓA has a triple edge, then only 6(b) is possible due to
Claim 3.

If ΓA contains no triple edges, and at contains least one double edge, then the forbidden
graphs of 5(a) and 5(c) leave us with the only possibility being 6(c).

If ΓA contains only single edges, then the forbidden graph 5(b) leaves us with only Al
and 6(d). #

Claim 7: If A has a connected graph ΓA, such that ΓA is of the form 6(c) from Claim
6, we have that ΓA is of the form 7(a) F4 (its underlying graph), or 7(b) Bl, Cl (its
underlying graph).
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Proof of Claim 7: Let v =
∑p
i=1 ivi and a =

∑q
i=1 iai, then since the only non-

orthogonal pairs in {v1, . . . , vp} are {vi, vi+1}, for i = 1, . . . , p− 1, with 2(vi, vi+1) = −1,
we get:

(v, v) =
p∑
i=1

i2 −
p−1∑
i=1

i(i+ 1) = p(p+ 1)
2 , (11)

and analogously (a, a) = q(q + 1)/2.
Since 4(vp, aq)2 = 2, we also have (v, a)2 = p2q2(vp, aq)2 = p2q2/2.
As a and v are linearly independent, we have due to the Cauchy-Schwarz inequality

that (v, a)2 < (v, v)(a, a). By entering the expressions we found for each term, we get an
inequality for p and q that simplifies to (p− 1)(q − 1) < 2.

Thus, the only possibilities are p = q = 2, where we obtain ΓA ≃ F4 as graphs, or
otherwise p = 1 or q = 1, where we obtain ΓA ≃ Bl ≃ Cl as graphs. #

Claim 8: If A has a connected graph ΓA, such that ΓA is of the form 6(d) from Claim
6, we have that ΓA is of the form 8(a) Dl, or 8(b) El.

Proof of Claim 8: Let v =
∑p−1
i=1 ivi, a =

∑r−1
i=1 iai, and b =

∑q−1
i=1 iai, then we get

(v, v) = p(p− 1)/2, (a, a) = r(r− 1)/2, and (b, b) = q(q− 1)/2, just like in Claim 7. Since
v, a, and b are pairwise orthogonal and linearly independent, we can apply the same
argument as in (7) to the normed vectors of v, a, and b to obtain:

(v, ψ)2

(v, v) + (a, ψ)2

(a, a) + (b, ψ)2

(b, b) < 1. (12)

Using the definitions of v, a, and b, and using how the graph 6(d) is constructed, it is
easy to calculate that the first term of (12) is (1 − 1/p)/2, the second is (1 − 1/r)/2, the
third is (1 − 1/q)/2. Plugging this into (12), we obtain:

1
p

+ 1
r

+ 1
q
> 1. (13)

We may assume without loss of generality that p ≥ q ≥ r. If p = q = r = 1, then we
obtain ΓA ≃ D3 ≃ A3. Otherwise, p, q ≥ 2 implies r = 2, and we either have any p ≥ 2,
with q = r = 2, obtaining the graph Dl, or otherwise p = 3, 4, 5, with q = 3 and r = 2,
obtaining the graphs E6, E7, and E8. #

Conclusion: Until now, we have proven that the only possible connected Dynkin sys-
tems are those with the underlying coexeter graphs Al, Bl, Cl, Dl, El, Fl, Gl. By
explicitly finding Dynkin systems of root systems with these diagrams, as mentioned in
Remark 3.1, we constructively verify the existence of such root systems. This is espe-
cially important in the cases of Bl and Cl, where they have the same underlying coexeter
graph, but are the Dynkin systems of two slightly different root systems. □
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