
Talk 5 - Root systems and root space decomposition

T. Janke-Fauß 15. Decembre 2023

5.1 Root space decomposition

From here on out we shall consider L to be a non-zero semisimple Lie algebra and F to
be an algebraicly closed field. As we have already seen, this is equivalent to [L,L] = L
or its center being zero. Also keep in mind the example of L = sl(2, F ) (or L = sl(n, F )
for 2 ≤ n ∈ N) which will be helpful to get a clearer image of the following definitions
and concepts.
For L being semisimple we are able to find an element x ∈ L which has a nonzero

semisimple part xs of its abstract Jordan decomposition. Thus we know that L has a
nonzero semisimple subalgebra (i.e. the span of xs) which only consists of semisimple
elements. We call such a subalgebra toral.

Lemma 1. A toral subalgebra of L is abelian.

Proof. Let H ⊂ L be a toral subalgebra. We have to show that adHH = 0 for all ele-
ments in H. For ad x being semisimple and F being algebraically closed we know that
ad x is diagonalizable. Thus we just need to show that it has no nonzero eigenvalues.
Supposing the opposite one will reach a contradiction rather fast.

Now we want to fix a maximal toral subalgebra H ⊂ L. In the case of L = sl(n, F ) it
is easy to see, that such an H consists of all the diagonal matrices (with trace 0). For
H being toral wen know that it is abelian and therefore adLH is a commuting family of
semisimple endomorphisms of L. Using some standard results of linear algebra we can
see that adLH is simultaneously diagonalizable, thus L can be written as a direct sum
of the subspaces Lα = {x ∈ L|[hx] = α(x)h for all h in H} where α ranges over H∗.
For α = 0 we can view L0 simply as CL(H), the centralizer of H. Further let us denote
Φ as the set of all α ̸= 0 ofH∗, such that Lα is not zero. The elements of Φ are refered to
as roots of L relativ to H. Using this notation we have a root space decomposition
(∗) L = L0

⊕ ⊔
α∈Φ

Lα (also called Cartan decomposition).

For the next part we want to take a closer look at this decomposition:

Proposition 2. For all α, β ∈ H∗ we get [Lα, Lβ ] ⊂ Lα+β . If x ∈ Lα with α ̸= 0 then
it follows that ad x is nilpotent. If α and β in H∗ and α+ β ̸= 0, then Lα and Lβ are
orthogonal to each other relativ to the Killing form κL of L.
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Proof. Using the Jacobi identity for x ∈ Lα, y ∈ Lβ and h ∈ H we get:

ad h([xy]) = [[hx]y] + [h[xy]] = α(h)[xy] + β(h)[xy] = α+ β(h)[xy]

From this we get the first assertion and the second is an immediate consequence of the
first. (Why?) The last one can be obtained by using theKilling form, its compatibility
with [−,−] and a chain of equalities which force the Killing form to be zero.

Corollary 3. The restriction of κL to L0 = CL(H) is non-degenerate.

Proof. We already now from previous talks that κL is non-degenerate because L is
semisimple. Furthermore we have just seen that L0 ⊥κL

Lα for all α ∈ Φ. Now if there
is a z0 ∈ L0 it would follow that κ(z0, L) = 0 which would force z0 to be zero.

Using a fact from linear algebra and after learning the facts above we are ready to
proof the equality of a maximal toral subalgebra and its centralizer.

Lemma 4. If x and y are commuting endomorphisms of a finite dimensional vector
space, with y being nilpotent, it follows that xy is nilpotent as well. In particular we
get Tr(xy) = 0.

Proposition 5. Let H be a maximal toral subalgebra of L. Then it follows that
H = CL(H) =: C.

Proof. This will only be a scatch of the proof, but it’s a good excercise to do it more
in detail yourself.

(1) C contains the semisimple and nilpotent parts of all its elements (ad x(H) = 0
for all x ∈ C)

(2) all semisimple elements of C lie in H (H is maximal)

(3) κH is non-degenerate (straight calculation)

(4) C is nilpotent (Engel’s Thm. + lin. alg. fact)

(5) H ∩ [C,C] (κ’s compatibility with the bracket)

(6) C is abelian (assume [C,C] ̸= 0)

(7) C = H (assume that’s not the case)
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5.2 Othogonality properties

As a dircet consequence we get the fact that κH is non-degenerate and this allows us
now to identify H with H∗ as follows:
To an α ∈ H∗ corresponds a (unique) element tα ∈ H whiuch satisfies α(h) = κ(tα, h)
for all h ∈ H. In particular, Φ corresponds to {tα | α ∈ Φ}, which is a subset of H.
Coming back to L = sl(n, F ), we can observe that (∗) corresponds to the decompo-

sition of L given by its standard basis. Let n = 2, then the basis would be given by
{x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
}. As we will see later on, we can identify Lα

with ⟨x⟩, L−α with ⟨y⟩ and L0 = CL(H) = H with ⟨h⟩. Thus the set of roots of L
is given in this case by some α and −α which correspond to tα =

(
0.25 0
0 −0.25

)
and

t−α =
(−0.25 0

0 0.25

)
.

Our next step will be to take a closer look at some more (orthogonality) properties
of the Lα.

Proposition 6.

(a) The set of all roots Φ spans H∗

(b) If α ∈ Φ then −α ∈ Φ

(c) If α ∈ Φ, x ∈ Lα and y ∈ L−α then we get [x, y] = κ(x, y)tα.

(d) If α ∈ Φ then [Lα.L−α] is one dimensional and is spanned by tα

(e) α(tα) = κ(tα, tα) ̸= 0 for all α ∈ Φ.

(f) If α ∈ Φ and 0 ̸= xα is an element of Lα, then there exists an yα of L−α such
that xα, yα and hα := [xα, yα] span a 3-dimensional subalgebra S ∼= sl(2, F ) via
xα 7→

(
0 1
0 0

)
, yα 7→

(
0 0
1 0

)
and hα 7→

(
1 0
0 −1

)
.

(g) hα = 2tα
κ(tα,tα) and also we get hα = −h−α

Proof. to (a): Assuming the opposite we can find (by duality) and nonzero element
h ∈ H such that α(h) = 0 for all α ∈ Φ. This also means that [h, Lα] = 0 for all α ∈ Φ
and for H being abelian [h,H] = 0 als holds. Thus it follows that h ∈ Z(L) which is
absurd. (bc. h ̸= 0 but Z(L) = 0 for L being semisimple)

to (b): Let α ∈ Φ and assume that −α /∈ Φ. We already have seen that κL(Lα, Lβ) =
0 for all β ∈ Φ such that α + β ̸= 0 which in this case holds for all those β. Thus it
follows that κL(Lα, L) = 0 which condraticts the nondegeneracy of κL.
to (c): Let α ∈ Φ, xα ∈ Lα and yα ∈ L−α. Let h ∈ H be arbitrary. Now we can

calculate:

κ(h, [x, y]) = κ([hx], y) = α(h)κ(x, y)
= κ(tα, h)κ(x, y) = κ(κ(x, y)tα, h) = κ(h, κ(x, y)tα)
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From this we can deduct that H is orthogonal to [x, y] − κ(x, y)tα which forces the
euality [x, y] = κ(x, y)tα

to (d): As we have seen in (c), tα spans [Lα, L−α] for [Lα, L−α] not being zero. Now
consider 0 ̸= x ∈ Lα. Then there exists an 0 ̸= y ∈ L−α, otherwise κL(x, L−α) = 0
wich forces κL(x, L) to be zero as well. But that contradicts the nondegeneracy of κL.
From that, by using (c) again, we get that [x, y] ̸= 0.

to (e): Assuming α(tα) = 0, so that [tα, x] = 0 = [tα.y] for all x ∈ Lα and y ∈ L−α.
Now we can find x and y (like in (d)) such that κ(x, y) ̸= 0. We may also scale
one or the other to get κ(x, y) = 1. Using (c) we get [x, y] = tα. It follows that the
subspace S of L spanned by x, y and tα is a three dimensional solvable algebra with
S ∼= adL S ⊂ gl(L). Furthermore we know that adL s is nilpotent for all s ∈ [S, S].
Thus adL tα is both semisimple and nilpotent. This leads to tα being an elemnt of
Z(L) which contradicts the choice of tα.
to(f): We want to find an yα ∈ L−α for a nonzero xα ∈ Lα such that κ(xα, yα) =
2

κ(tα,tα) . This is indeed possible for xα not being orthogonal to the elements of L−α.

Now set hα = 2tα
κ(tα,tα) . One can now verify via easy calculations that the wanted

properties hold for hα. This gives us a three dimensional subalgebra of L which has
the same multiplication table as sl(2, F ).

to (g): Recall the definition of tα by κ(tα, h) = α(h) for all h ∈ H. This already
shows that tα = −t−α. Using the definition of hα the last assertion follows right
thereafter.

The next two subsections shall only be discussed briefly.

5.3 Integrality properties

For an α ∈ Φ we also have −α ∈ Φ as we have seen. Like in Prop. 6 (f), we define Sα

to be such a subalgebra of L. With the help of the Weyl theorem and some knowledge
about the classification of sl(2, F )-modules we have a complete description of all (finite
dimensional) Sα-modules. In particular we can describe adL S. To sum everything we
have gathered so far we have the following Proposition:

Proposition 7.

(a) For α ∈ Φ we have dim Lα = 1. In particular Sα = Lα + L−α +Hα for Hα =
[Lα.L−α]. Furthermore for a given 0 ̸= xα ∈ Lα we can find a yα ∈ L−α sucht
that [xα, yα] = hα.

(b) If α ∈ Φ the only multiples of it in Φ are α and −α.

(c) If α, β ∈ Φ , then β(hα) ∈ Z and β − β(h)α ∈ Φ. We call these numbers β(h)
Cartan numbers.

(d) If α, β, α+ β ∈ Φ then [Lα, Lβ ] = Lα+β .

4



(e) Let α, β ∈ Φ such that β ̸= ±α. Let r, q be (respectively) the largest integers for
which β− rα and β+ qα are roots. Then all β+ iα are roots for −r ≤ i ≤ q and
β(hα) = r − q.

(f) L is generated (as a Lie algebra) by the root spaces Lα.

The chapter about the rationality properties is about finding a Q − subspace EQ of
H∗ with the same dimension (with respect to F ) as H∗ and which can be extended
to a real vector space E := R ⊗Q EQ. By defining (γ.δ) := κ(tγ , tδ) for all γ, δ ∈ H∗,
E is even an euclidian space and Φ contains a basis of E. With this construction we
get a 1 : 1 correspondence between the pairs (L,H) and (Φ, E). This leads us to the
next section about the root system. For more detailed information about the last two
topics take a look at the sections (8.4) & (8.5) of “Introduction to Lie Algebras and
Representation Theory” by Humphreys.

5.4 Root sytems

Befor we learn something about the so called root system we have to do a little detour
and focus on reflections. For the rest of this chapter we therefore fix a euclidian space
E, i.e. finite dimensional vector space over R endowed with a positiv definite symmetric
bilinear form (−,−). Geometrically speaking we can understand a reflection on E as an
invertible linear transformation leaving pointwise fixed some hyperplane (a subspace
of codimension one) and sending any vector orthogonal to that plane into its negative.
Thus any nonzero vector α determines a reflection σα with a reflecting hyperplane
Pα = {β ∈ E | (β, α) = 0}. Note that any vector v ∈ ⟨α⟩ will determine the same
reflecting hyperplane. We can define σα more expplicitly as follows:

σα(β) = β − 2(β,α)
(α,α) α

One can easily verify that the wanted properties for σα hold. For 2(β,α)
(α,α) occuring more

often we want to abbreviate it by writting ⟨β, α⟩. The following lemma will be useful
later on:

Lemma 8. Let Φ be a finite set which spans E and suppose that all reflections σα

with α ∈ Φ leave Φ invariant. If there is a σ ∈ GL(E) leaving Φ invariant, fixing a
pointwise a hyperplane P of E and sending some nonzero α ∈ Φ into its negative, then
it follows that σ = σα and P = Pα .

Proof. First we define τ = σσα. From this definition we can see that τ leaves Φ
invariant and acts as an identity on Rα as well as on the quotient E/Rα. Thus all
eigenvalues of τ are one and the minimal polynomial of τ devides (T − 1)l where
l = dim E. On the other hand, since Φ is finte, not all vectors β, τ(β), . . . , τ(β)k can
be distinct (β ∈ Φ and |Φ| ≤ k). As a consequence of that there exists a power of
τ which fixes β. Now chose k large enough that τk fixes all β ∈ Φ. Because Φ spans
E this forces τk = 1. Thus the minimal polynomial of τ devides T k − 1. Combined
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with the previous observation this shows that the minimal polynomial of τ equals
T − 1 = gcd{T k − 1, (T − 1)l} which means that τ = 1.

Having this in mind we can go on to our desired definition of the root system:

Definition 9. A subset Φ of an euclidian space E is called root system in E if the
following axioms are satisfied:
(R1) Φ is finte, spans E and does not contain 0
(R2) If α ∈ Φ then the only multiples of it in Φ are α and −α
(R3) If α ∈ Φ, the reflection σα leaves Φ invariant.
(R4) If α, β ∈ Φ then ⟨β, α⟩ ∈ Z

In some literature one may find this definition without the inclusion of (R2). What
we call a “root system”here might there be refered to as a “reduced root system”. Also
note that (R2) and (R3) imply that Φ = −Φ.
Let Φ be a root system in E and denote by W the subgroup of GL(E) generated

by the reflections σα for α being an element of Φ. By (R3), W permutes the set Φ,
which is finte because of (R1). This allows us to identify W with a subgroup of the
symmetric group Sn for n := |Φ|. We call this group the Weyl group of Φ. In the
following lemma we will see how certain automorphisms of E act on W.

Lemma 10. Let Φ be a root system in E with the Weyl group W. If σ ∈ GL(E)
leaves Φ invariant, then σσασ

−1 = σσ(α) for all α ∈ Φ and ⟨β, α⟩ = ⟨σ(β), σ(α)⟩ for
all α, β ∈ Φ.

The Weyl group and its properties will be discussed more in detail in the next talk.
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