15. Decembre 2023

5.1 Root space decomposition

From here on out we shall consider L to be a non-zero semisimple Lie algebra and F to be an algebraicly closed field. As we have already seen, this is equivalent to [L, L] = L or its center being zero. Also keep in mind the example of $L = \mathfrak{sl}(2, F)$ (or $L = \mathfrak{sl}(n, F)$ for $2 \leq n \in \mathbb{N}$) which will be helpful to get a clearer image of the following definitions and concepts.

For L being semisimple we are able to find an element $x \in L$ which has a nonzero semisimple part x_s of its abstract *Jordan decomposition*. Thus we know that L has a nonzero semisimple subalgebra (i.e. the span of x_s) which only consists of semisimple elements. We call such a subalgebra **toral**.

Lemma 1. A toral subalgebra of L is abelian.

Proof. Let $H \subset L$ be a toral subalgebra. We have to show that $ad_H H = 0$ for all elements in H. For $ad \ x$ being semisimple and F being algebraically closed we know that $ad \ x$ is diagonalizable. Thus we just need to show that it has no nonzero eigenvalues. Supposing the opposite one will reach a contradiction rather fast.

Now we want to fix a maximal toral subalgebra $H \subset L$. In the case of $L = \mathfrak{sl}(n, F)$ it is easy to see, that such an H consists of all the diagonal matrices (with trace 0). For H being toral wen know that it is abelian and therefore $ad_L H$ is a commuting family of semisimple endomorphisms of L. Using some standard results of linear algebra we can see that $ad_L H$ is simultaneously diagonalizable, thus L can be written as a direct sum of the subspaces $L_{\alpha} = \{x \in L | [hx] = \alpha(x)h \text{ for all } h \text{ in } H\}$ where α ranges over H^* . For $\alpha = 0$ we can view L_0 simply as $C_L(H)$, the centralizer of H. Further let us denote Φ as the set of all $\alpha \neq 0$ of H^* , such that L_{α} is not zero. The elements of Φ are refered to as **roots** of L relative to H. Using this notation we have a **root space decomposition** (*) $L = L_0 \bigoplus \bigsqcup_{\alpha \in I} L_{\alpha}$ (also called **Cartan decomposition**).

For the next part we want to take a closer look at this decomposition:

Proposition 2. For all $\alpha, \beta \in H^*$ we get $[L_{\alpha}, L_{\beta}] \subset L_{\alpha+\beta}$. If $x \in L_{\alpha}$ with $\alpha \neq 0$ then it follows that *ad* x is nilpotent. If α and β in H^* and $\alpha + \beta \neq 0$, then L_{α} and L_{β} are orthogonal to each other relative to the *Killing form* κ_L of L.

Seminar: Lie Algebras, Ruprecht-Karls Universität Heidelberg

Proof. Using the Jacobi identity for $x \in L_{\alpha}$, $y \in L_{\beta}$ and $h \in H$ we get:

$$ad \ h([xy]) = [[hx]y] + [h[xy]] = \alpha(h)[xy] + \beta(h)[xy] = \alpha + \beta(h)[xy]$$

From this we get the first assertion and the second is an immediate consequence of the first. (Why?) The last one can be obtained by using the *Killing form*, its compatibility with [-, -] and a chain of equalities which force the *Killing form* to be zero.

Corollary 3. The restriction of κ_L to $L_0 = C_L(H)$ is non-degenerate.

Proof. We already now from previous talks that κ_L is non-degenerate because L is semisimple. Furthermore we have just seen that $L_0 \perp_{\kappa_L} L_\alpha$ for all $\alpha \in \Phi$. Now if there is a $z_0 \in L_0$ it would follow that $\kappa(z_0, L) = 0$ which would force z_0 to be zero. \Box

Using a fact from linear algebra and after learning the facts above we are ready to proof the equality of a maximal toral subalgebra and its centralizer.

Lemma 4. If x and y are commuting endomorphisms of a finite dimensional vector space, with y being nilpotent, it follows that xy is nilpotent as well. In particular we get Tr(xy) = 0.

Proposition 5. Let *H* be a maximal toral subalgebra of *L*. Then it follows that $H = C_L(H) =: C$.

Proof. This will only be a scatch of the proof, but it's a good excercise to do it more in detail yourself.

- (1) C contains the semisimple and nilpotent parts of all its elements $(ad \ x(H) = 0$ for all $x \in C$)
- (2) all semisimple elements of C lie in H (H is maximal)
- (3) κ_H is non-degenerate (straight calculation)
- (4) C is nilpotent (Engel's Thm. + lin. alg. fact)
- (5) $H \cap [C, C]$ (κ 's compatibility with the bracket)
- (6) C is abelian (assume $[C, C] \neq 0$)
- (7) C = H (assume that's not the case)

5.2 Othogonality properties

As a direct consequence we get the fact that κ_H is non-degenerate and this allows us now to identify H with H^* as follows:

To an $\alpha \in H^*$ corresponds a (unique) element $t_{\alpha} \in H$ which satisfies $\alpha(h) = \kappa(t_{\alpha}, h)$ for all $h \in H$. In particular, Φ corresponds to $\{t_{\alpha} \mid \alpha \in \Phi\}$, which is a subset of H.

Coming back to $L = \mathfrak{sl}(n, F)$, we can observe that (*) corresponds to the decomposition of L given by its standard basis. Let n = 2, then the basis would be given by $\{x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\}$. As we will see later on, we can identify L_{α} with $\langle x \rangle$, $L_{-\alpha}$ with $\langle y \rangle$ and $L_0 = C_L(H) = H$ with $\langle h \rangle$. Thus the set of roots of L is given in this case by some α and $-\alpha$ which correspond to $t_{\alpha} = \begin{pmatrix} 0.25 & 0 \\ 0 & -0.25 \end{pmatrix}$ and $t_{-\alpha} = \begin{pmatrix} -0.25 & 0 \\ 0 & 0.25 \end{pmatrix}$.

Our next step will be to take a closer look at some more (orthogonality) properties of the L_{α} .

Proposition 6.

- (a) The set of all roots Φ spans H^*
- (b) If $\alpha \in \Phi$ then $-\alpha \in \Phi$
- (c) If $\alpha \in \Phi$, $x \in L_{\alpha}$ and $y \in L_{-\alpha}$ then we get $[x, y] = \kappa(x, y)t_{\alpha}$.
- (d) If $\alpha \in \Phi$ then $[L_{\alpha}, L_{-\alpha}]$ is one dimensional and is spanned by t_{α}
- (e) $\alpha(t_{\alpha}) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0$ for all $\alpha \in \Phi$.
- (f) If $\alpha \in \Phi$ and $0 \neq x_{\alpha}$ is an element of L_{α} , then there exists an y_{α} of $L_{-\alpha}$ such that x_{α}, y_{α} and $h_{\alpha} := [x_{\alpha}, y_{\alpha}]$ span a 3-dimensional subalgebra $S \cong \mathfrak{sl}(2, F)$ via $x_{\alpha} \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, y_{\alpha} \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $h_{\alpha} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- (g) $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}$ and also we get $h_{\alpha} = -h_{-\alpha}$

Proof. to (a): Assuming the opposite we can find (by duality) and nonzero element $h \in H$ such that $\alpha(h) = 0$ for all $\alpha \in \Phi$. This also means that $[h, L_{\alpha}] = 0$ for all $\alpha \in \Phi$ and for H being abelian [h, H] = 0 als holds. Thus it follows that $h \in Z(L)$ which is absurd. (bc. $h \neq 0$ but Z(L) = 0 for L being semisimple)

to (b): Let $\alpha \in \Phi$ and assume that $-\alpha \notin \Phi$. We already have seen that $\kappa_L(L_\alpha, L_\beta) = 0$ for all $\beta \in \Phi$ such that $\alpha + \beta \neq 0$ which in this case holds for all those β . Thus it follows that $\kappa_L(L_\alpha, L) = 0$ which conductives the nondegeneracy of κ_L .

to (c): Let $\alpha \in \Phi$, $x_{\alpha} \in L_{\alpha}$ and $y_{\alpha} \in L_{-\alpha}$. Let $h \in H$ be arbitrary. Now we can calculate:

$$\kappa(h, [x, y]) = \kappa([hx], y) = \alpha(h)\kappa(x, y)$$
$$= \kappa(t_{\alpha}, h)\kappa(x, y) = \kappa(\kappa(x, y)t_{\alpha}, h) = \kappa(h, \kappa(x, y)t_{\alpha})$$

From this we can deduct that H is orthogonal to $[x, y] - \kappa(x, y)t_{\alpha}$ which forces the evality $[x, y] = \kappa(x, y)t_{\alpha}$

to (d): As we have seen in (c), t_{α} spans $[L_{\alpha}, L_{-\alpha}]$ for $[L_{\alpha}, L_{-\alpha}]$ not being zero. Now consider $0 \neq x \in L_{\alpha}$. Then there exists an $0 \neq y \in L_{-\alpha}$, otherwise $\kappa_L(x, L_{-\alpha}) = 0$ wich forces $\kappa_L(x, L)$ to be zero as well. But that contradicts the nondegeneracy of κ_L . From that, by using (c) again, we get that $[x, y] \neq 0$.

to (e): Assuming $\alpha(t_{\alpha}) = 0$, so that $[t_{\alpha}, x] = 0 = [t\alpha.y]$ for all $x \in L_{\alpha}$ and $y \in L_{-\alpha}$. Now we can find x and y (like in (d)) such that $\kappa(x, y) \neq 0$. We may also scale one or the other to get $\kappa(x, y) = 1$. Using (c) we get $[x, y] = t_{\alpha}$. It follows that the subspace S of L spanned by x, y and t_{α} is a three dimensional solvable algebra with $S \cong ad_L S \subset \mathfrak{gl}(L)$. Furthermore we know that $ad_L s$ is nilpotent for all $s \in [S, S]$. Thus $ad_L t_{\alpha}$ is both semisimple and nilpotent. This leads to t_{α} being an elemnt of Z(L) which contradicts the choice of t_{α} .

to(f): We want to find an $y_{\alpha} \in L_{-\alpha}$ for a nonzero $x_{\alpha} \in L_{\alpha}$ such that $\kappa(x_{\alpha}, y_{\alpha}) = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}$. This is indeed possible for x_{α} not being orthogonal to the elements of $L_{-\alpha}$. Now set $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}$. One can now verify via easy calculations that the wanted properties hold for h_{α} . This gives us a three dimensional subalgebra of L which has the same multiplication table as $\mathfrak{sl}(2, F)$.

to (g): Recall the definition of t_{α} by $\kappa(t_{\alpha}, h) = \alpha(h)$ for all $h \in H$. This already shows that $t_{\alpha} = -t_{-\alpha}$. Using the definition of h_{α} the last assertion follows right thereafter.

The next two subsections shall only be discussed briefly.

5.3 Integrality properties

For an $\alpha \in \Phi$ we also have $-\alpha \in \Phi$ as we have seen. Like in Prop. 6 (f), we define S_{α} to be such a subalgebra of L. With the help of the Weyl theorem and some knowledge about the classification of $\mathfrak{sl}(2, F)$ -modules we have a complete description of all (finite dimensional) S_{α} -modules. In particular we can describe $ad_L S$. To sum everything we have gathered so far we have the following Proposition:

Proposition 7.

- (a) For $\alpha \in \Phi$ we have $\dim L_{\alpha} = 1$. In particular $S_{\alpha} = L_{\alpha} + L_{-\alpha} + H_{\alpha}$ for $H_{\alpha} = [L_{\alpha}.L_{-\alpha}]$. Furthermore for a given $0 \neq x_{\alpha} \in L_{\alpha}$ we can find a $y_{\alpha} \in L_{-\alpha}$ such that $[x_{\alpha}, y_{\alpha}] = h_{\alpha}$.
- (b) If $\alpha \in \Phi$ the only multiples of it in Φ are α and $-\alpha$.
- (c) If $\alpha, \beta \in \Phi$, then $\beta(h_{\alpha}) \in \mathbb{Z}$ and $\beta \beta(h)\alpha \in \Phi$. We call these numbers $\beta(h)$ *Cartan numbers*.
- (d) If $\alpha, \beta, \alpha + \beta \in \Phi$ then $[L_{\alpha}, L_{\beta}] = L_{\alpha+\beta}$.

- (e) Let $\alpha, \beta \in \Phi$ such that $\beta \neq \pm \alpha$. Let r, q be (respectively) the largest integers for which $\beta r\alpha$ and $\beta + q\alpha$ are roots. Then all $\beta + i\alpha$ are roots for $-r \leq i \leq q$ and $\beta(h_{\alpha}) = r q$.
- (f) L is generated (as a *Lie algebra*) by the root spaces L_{α} .

The chapter about the rationality properties is about finding a \mathbb{Q} - subspace $E_{\mathbb{Q}}$ of H^* with the same dimension (with respect to F) as H^* and which can be extended to a real vector space $E := \mathbb{R} \otimes_{\mathbb{Q}} E_{\mathbb{Q}}$. By defining $(\gamma.\delta) := \kappa(t_{\gamma}, t_{\delta})$ for all $\gamma, \delta \in H^*$, E is even an euclidian space and Φ contains a basis of E. With this construction we get a 1 : 1 correspondence between the pairs (L, H) and (Φ, E) . This leads us to the next section about the *root system*. For more detailed information about the last two topics take a look at the sections (8.4) & (8.5) of "Introduction to Lie Algebras and Representation Theory" by Humphreys.

5.4 Root sytems

Befor we learn something about the so called root system we have to do a little detour and focus on reflections. For the rest of this chapter we therefore fix a euclidian space E, i.e. finite dimensional vector space over \mathbb{R} endowed with a positiv definite symmetric bilinear form (-, -). Geometrically speaking we can understand a reflection on E as an invertible linear transformation leaving pointwise fixed some hyperplane (a subspace of codimension one) and sending any vector orthogonal to that plane into its negative. Thus any nonzero vector α determines a reflection σ_{α} with a reflecting hyperplane $P_{\alpha} = \{\beta \in E \mid (\beta, \alpha) = 0\}$. Note that any vector $v \in \langle \alpha \rangle$ will determine the same reflecting hyperplane. We can define σ_{α} more explicitly as follows:

$$\sigma_{\alpha}(\beta) = \beta - \frac{2(\beta,\alpha)}{(\alpha,\alpha)}\alpha$$

One can easily verify that the wanted properties for σ_{α} hold. For $\frac{2(\beta,\alpha)}{(\alpha,\alpha)}$ occuring more often we want to abbreviate it by writting $\langle \beta, \alpha \rangle$. The following lemma will be useful later on:

Lemma 8. Let Φ be a finite set which spans E and suppose that all reflections σ_{α} with $\alpha \in \Phi$ leave Φ invariant. If there is a $\sigma \in GL(E)$ leaving Φ invariant, fixing a pointwise a hyperplane P of E and sending some nonzero $\alpha \in \Phi$ into its negative, then it follows that $\sigma = \sigma_{\alpha}$ and $P = P_{\alpha}$.

Proof. First we define $\tau = \sigma \sigma_{\alpha}$. From this definition we can see that τ leaves Φ invariant and acts as an identity on $\mathbb{R}\alpha$ as well as on the quotient $E/\mathbb{R}\alpha$. Thus all eigenvalues of τ are one and the minimal polynomial of τ devides $(T-1)^l$ where $l = \dim E$. On the other hand, since Φ is finte, not all vectors $\beta, \tau(\beta), \ldots, \tau(\beta)^k$ can be distinct ($\beta \in \Phi$ and $|\Phi| \leq k$). As a consequence of that there exists a power of τ which fixes β . Now chose k large enough that τ^k fixes all $\beta \in \Phi$. Because Φ spans E this forces $\tau^k = 1$. Thus the minimal polynomial of τ devides $T^k - 1$. Combined

with the previous observation this shows that the minimal polynomial of τ equals $T-1 = gcd\{T^k - 1, (T-1)^l\}$ which means that $\tau = 1$.

Having this in mind we can go on to our desired definition of the root system:

Definition 9. A subset Φ of an euclidian space E is called **root system** in E if the following axioms are satisfied:

 $(R1) \Phi$ is finte, spans E and does not contain 0

(R2) If $\alpha \in \Phi$ then the only multiples of it in Φ are α and $-\alpha$

(R3) If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant.

(R4) If $\alpha, \beta \in \Phi$ then $\langle \beta, \alpha \rangle \in \mathbb{Z}$

In some literature one may find this definition without the inclusion of (R2). What we call a "root system" here might there be referred to as a "reduced root system". Also note that (R2) and (R3) imply that $\Phi = -\Phi$.

Let Φ be a root system in E and denote by \mathcal{W} the subgroup of GL(E) generated by the reflections σ_{α} for α being an element of Φ . By (R3), \mathcal{W} permutes the set Φ , which is finite because of (R1). This allows us to identify \mathcal{W} with a subgroup of the symmetric group S_n for $n := |\Phi|$. We call this group the **Weyl group** of Φ . In the following lemma we will see how certain automorphisms of E act on \mathcal{W} .

Lemma 10. Let Φ be a root system in E with the Weyl group \mathcal{W} . If $\sigma \in GL(E)$ leaves Φ invariant, then $\sigma\sigma_{\alpha}\sigma^{-1} = \sigma_{\sigma(\alpha)}$ for all $\alpha \in \Phi$ and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$ for all $\alpha, \beta \in \Phi$.

The Weyl group and its properties will be discussed more in detail in the next talk.

References

[Hum72] James Humphreys. Introduction to Lie Algebras and Representation Theory. Springer, 1972. url: https://www.math.uci.edu/ brusso/humphreys.pdf.