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Introduction

These are the notes corresponding to the fourth talk given during a seminar on semi-simple Lie
algebras at Heidelberg University under the supervision of Professor Florent Schaffhauser. They
are split into two main sections: The representations of sl2(C) and those of sln(C). The first section
contains everything that was said during the presentation, and should serve as a very thorough
example of the second, more general case, as the concepts stay similar, but the terminology and
methods used get more abstract. The definitions in the first chapter are to be treated as pre-
liminary, since they suffice in the way they are given, when one is studying sl2, but will need to
be changed, or generalised when moving to sln. In the sense of a certain brevity there are a few
”inaccuracies” in the second section as well, but these are usually marked as such. Especially the
universal enveloping algebra, mentioned in section 2.4 is affected by this and I recommend using
either [Ser92] or [Hal15] as references for filling those gaps.

If not explicitly defined otherwise, sln will denote sln(C) and all sln-modules are assumed to
be finite dimensional.

1 Representations of sl2(C)
Recall

Let V be a vector space, X,Y ∈ g.

1. A representation of a Lie algebra is a linear map:

π : g → End(V ) satisfying the relation π([X,Y ]) = π(X)π(Y )− π(Y )π(X).

2. Let ·π : g× V → V, (X, v) 7→ π(X)(v). Then the pair (V, ·π) is called a g-module.

By abuse of terminology one usually writes ”V is a g-module” and π(X)(v) = X · v = Xv are
used in an equivalent way. In some references the linear map, which effectively defines the repre-
sentation is only implied or V itself is even referred to as the representation, but as it is possible
to identify endomorphisms with matrices and they are not studied explicitly in many cases this
small inaccuracy is not uncommon. Especially when studying well-understood Lie-algebras like
sl2 or sln this does not pose a problem, since the representations are essentially identified by the
eigenvalues or rather weights of H and h respectively.

The canonical basis for sl2(C) is given by:

H =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
,

satisfying the bracket relations: [X,Y ] = H [H,X] = 2X [H,Y ] = −2Y .

The choice of the given elements arises naturally but, as we will see later on, there is a much
more methodical approach to defining the basis of sln for any n.
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1.1 Weights and Primitive Elements of sl2

Definition 1.1.1
Let V be a finite dimensional sl2-module and λ ∈ C, an eigenvalue to H.

Vλ denotes the eigenspace of H in V , corresponding to λ, i.e.: Vλ = {v ∈ V | Hv = λv}, which is
called weightspace in this context.

Elements v ∈ Vλ are said to have weight λ whereas λ itself is called a weight of V

e ∈ V \{0} is called primitive element of weight λ if (and only if) it is an eigenvector to H with
weight λ and is terminated by applying X to it, i.e.: Xe = 0 and He = λe

Proposition 1.1.2.

(i) The vectorspace V is a direct sum of weight spaces:⊕
λ∈C

Vλ = V.

(ii) If v is an element of Vλ, hence has weight λ, then the elements Xv and Y v have weight λ+2
and λ− 2 respectively.

(iii) Every non-empty, finite dimensional sl2-module contains a primitive element.

Proof.

(i) Since C is algebraically closed all eigenvalues of H are elements of C and they are distinct,
hence V is a direct sum of (eigen-/) weightspaces of H.

(ii) This part can be calculated directly. Let v ∈ Vλ, then:

HXv = [H,X]v +XHv = 2Xv +Xλv = (λ+ 2)Xv =⇒ Xv ∈ Vλ+2.

Here we used the basic bracket relations mentioned earlier and the fact that v was chosen as
an eigenvector to H.

(iii) Let v again be an eigenvector to H and consider the sequence v,Xv,X2v, .... This sequence
terminates, as V is finite dimensional, hence there will be a m such that Vλ+2m ̸= 0 but
Vλ+2m+1 = 0. The last non-zero element of this sequence Xmv will be the proposed primitive
element.

1.2 sl2-Modules Generated by Primitive Elements

Due to Prop.1.1.2(ii) we may observe, that by applying X and Y to elements of some weightspace
we are able to raise or lower their respective weight. This is the first instance, in which we can
(albeit still rather heuristically) observe that if any module contains weights with respect to H
and is stable under the action of X,Y , then it must contain elements of every possible weight.
Moreover, as V is assumed to be finite dimensional, there must be a weightspace consisting of
elements whose weight can not be raised any further, if we apply Y to an element of this space of
highest weight we can span all of V . This is one of the goals of this section.

Vλ−4 Vλ−2 VλYY

X X

Proposition 1.2.1. Let e be a primitive element of weight λ and en = Y ne 1
n! with the convention

that e−1 = 0. Then the following three formulas hold:

(i) Hen = (λ− 2n)en

(ii) Y en = (n+ 1)en+1

(iii) Xen = (λ− n+ 1)en−1

Proof. For this proof please refer to Section 5 Lemma 2.5.2.
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These formulas are a formal version of the prior observation that Y can be used to span V , but
we can also draw a few important corollaries from this proposition.

Corollary 1.2.2. There is an integer m, such that ei = 0 ∀i > m, the eigenvectors e1, . . . , ei are
linearly independent, and the corresponding eigenvalues are integers.

Proof. The eigenvectors are linearly independent, due to them having distinct weights. Further-
more, as V is finite dimensional there must exist an m ∈ N such that Vλ+m ̸= 0, but Vλ+(m+1) = 0,
hence ei = 0∀i > m and, as applying formula (iii) to the previous statement shows, λ = m ∈ N.
This m is then called highest weight of V .

Our goal was to generate sl2-modules from primitive elements, this can be achieved if we consider
the submodule W ⊆ V with a basis given by BW = {e, . . . , em}.

Corollary 1.2.3.

(i) W is stable under sl2.

(ii) W is an irreducible sl2-module.

Proof.

(i) The formulas show H(W ), X(W ), Y (W ) ⊆ W .

(ii) Let W ′ ⊆ W , non-zero and stable under sl2. The eigenvalues of H in W are given by
m,m−2,m−4, . . . ,−m, each with multiplicity 1. As W ′ is defined to be a non-zero subspace
of W and is assumed to be stable under sl2, it has to contain one of the eigenvectors ei. By
applying formulae (ii) and (iii) we can then lower or raise the weight of this ei, such that we
reach e0, . . . , ei−1, ei, ei+1, . . . , em. This proves W ′ = W and W is irreducible.

1.3 Classifying sl2-Modules by Weight

We will now consider a more general case, in which the action of sl2 is not necessarily given by
elements of the canonical basis, but any endomorphisms1 satisfying the following conditions:

Let Wm be a vectorspace with a basis Bm = {e0, . . . , em} and thereby dimWm = m + 1 and
let h, x, y be endomorphisms on Wm. If the following formulas hold, h, x, y turn Wm into a sl2-
module, as seen in the previous section:

hen = (m− 2)en, yen = (n+ 1)en+1, xen = (m− n+ 1)en−1,

hxen − xhen = 2xen, hyen − yhen = −2yen, xyen − yxen = hen.

Theorem 1.3.1. Define Wm as above and let V be an irreducible sl2-module of dimension m+1,
then we get:

(i) Wm is irreducible.

(ii) V ∼= Wm.

Proof.

(i) This follows from 1.2.3 and the fact that Wm is generated by images of e0 with weight m in
a similar way to Y spanning V in the last section.

(ii) We already know that V contains a primitive element v of integer weight w, and that the
submodule V ′ of V generated by this v has dimension w + 1. As V was presumed to be
irreducible we can infer that V ′ = V and w = m, which then provides us with the fact that
V ∼= Wm, as we can simply apply the formulas we defined earlier.

This is one of, if not the most important part of this topic, as we have now proven, that the
irreducible representations of sl2 are in a 1 : 1-correspondence to a system of integers and are as
such defined by their highest weight.

1We will assume these endomorphisms and representations of dimension m + 1 to exist, as this proof would need
additional knowledge of Lie group representation, for details cf. [Hal15]Ch. 4.2
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Theorem 1.3.2. A finite dimensional sl2-module V is isomorphic to a direct sum of Wm-modules.

Proof. Due to Weyl’s Theorem every finite dimensional linear representation of semi-simple Lie
algebras is completely irreducible. From this the theorem can by directly deduced.

Theorem 1.3.3.

(i) The induced endomorphism of V is diagonalizable with integer eigenvalues and for any eigen-
value n, the elements n− 2, n− 4, . . . ,−n are also eigenvalues.

(ii) Y and X induce isomorphisms:

Xn : Vn → V−nY
n : V−n → Vn

Proof. This theorem is proved by reviewing earlier statements (for example we notice, that V may
be viewed as Wn and that dimWn = dimW−n.

2 Representations of sln(C)
2.1 Constructing a basis for sln

The main difference of studying the sln-case is that we can no longer discuss all n×n matrices with
trace zero explicitly (as we did in the sl2-case) but rather we need to classify them with regards
to the position of their entries and then analyse the three subalgebras of sln generated by them:

h = Lie algebra of diagonal matrices H = diag(λ1, . . . , λn) with Σ λi = 0, λi ∈ C,
x = Lie algebra of superdiagonal matrices,

y = Lie algebra of infradiagonal matrices.

sln may then be decomposed into their direct sum2: sln = h⊕ x⊕ y.
Note that h is the cartan subalgebra of sln (hence abelian3), x resp. y are nilpotent and h ⊕ x is
the canonical borel algebra4.

Definition 2.1.1
Let h∗ be the dual5 of h, then elements χ ∈ h∗ are of the form: χ =

∑n
i=1 uiλi, with ui ∈ C and

λi being the entries of a diagonal matrix H ∈ h.

(i) A linear form α = λi − λj (i < j) is called root.

(ii) The set of positive roots is denoted by R+ = {α ∈ h∗ | α = λi − λj , (i < j)},

(iii) The set of by roots R = R+ ∪ (−R+).

(iv) Positive roots of the form: αi = λi − λi+1 are called simple roots.

Using the previous definitions we will now construct more explicit classes of matrices, which will
then prove useful to find bases of the subalgebras of sln, making it possible to study them in a
way, similar to the case of sl2.

Definition 2.1.2
Let α = λi − λj ∈ R, (i ̸= j) and Hα, Xα ∈ sln. We define:

Xα := X(i,j) = 1 and zero elsewhere,

Hα := H ∈ h with entries H(i,i) = 1, H(j,j) = −1 and zero elsewhere.

2Using the concept of rootspace decomposition (talk 5) it’s possible to construct the following decomposition ”from
scratch” so to say, but for my talk I will assume it as given

3Cf. [Ser87] Ch.3.5 Th.3
4The maximal solvable subalgebra
5The space of linear forms χ : h → C
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Proposition 2.1.3.

(i) The Xα’s make a basis of x and the X−α’s make a basis of y.

(ii) If H ∈ h, α ∈ R then [H,Xα] = α(H)Xα.

(iii) [Xα, X−α] = Hα.

Proof.

(i) The way the Xα and X−α are defined, the claim follows directly from the conditions i < j
and i ̸= j.

(ii) Consider (λ1, . . . , λn), the entries on the diagonal of H and α = λi−λj . Due to the definition
of H and Xα we know: H ·Xα = λi ·Xα and Xα ·H = λj ·Xα =⇒ [H,Xα] = (λi−λj)Xα =
α(H)Xα.

(iii) Xα · X−α yields a matrix A with (Ai,i) = 1 and X−α · Xα = A′ with A′
(j,j) = 1. Then we

get: A−A′ = Hα.

Remark
The statement α(Hα) = 2 is always true.

Example 2.1.4
Returning to the the case of sl2 we only have one positive root: α = λ1 − λ2 = 2, so H is unique
and we can construct the canonical basis:

Hα = H =

(
1 0
0 −1

)
, Xα = X =

(
0 1
0 0

)
, X−α = Y =

(
0 0
1 0

)
.

2.2 Weights and Primitive Elements of sln

Similar to the way we studied sl2 in the first section we will now be analysing the weights and
primitive elements of sln-modules to gain insight of their structure. But we will need to update a
few definitions in advance:

Definition 2.2.1
Let V be a finite dimensional sln module, v ∈ V, χ ∈ h∗, and H ∈ h.

(i) For any χ we denote the corresponding space of simultaneous eigenvectors (i.e. H · v =
χ(H) · v ∀H ∈ h) as Vχ and call it weight space.

(ii) The elements of the weightspace Vχ are said to have weight χ.

(iii) Elements χ with non-empty weight-space Vχ are called weights of V .

(iv) The dimension of Vχ is called multiplicity of χ.

Proposition 2.2.2. Let χ ∈ h∗, v ∈ Vχ, α ∈ R, then Xαv has weight χ+ α.

Proof. This is a simple calculation:
HXαv = [H,Xα]v +XαHv = α(H)Xαv + χ(H)Xαv = (α+ χ)(H)Xαv =⇒ Xαv ∈ Vχ+α

Proposition 2.2.3. The module V is a direct sum of weightspaces Vχ:

V =
⊕
χ∈h∗

Vχ

Proof. The eigenvectors corresponding to distinct eigenvalues are linearly independent, hence the
sum of all weightspaces is direct. We also know that the module V ′ generated by the sum is stable
under sln, due to it being stable by the Xα’s and h. This yields: V ′ ⊆ V . Assume now, that there
exists a different, non-zero V ′′, such that V ′ ⊕ V ′′ = V :
With h being abelian6 and C being algebraically closed we know that V ′′ contains an eigenvector
v ̸= (0) of h, which by definition should be contained in some Vχ, contradicting the assumption:
V ′′ ∩ V ′ = 0. This implies V ′ = V .
6meaning the elements are simultaneous diagonalizable
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Definition 2.2.4
e ∈ V \{0} is called primitive element if and only if e is an eigenvector to h and Xαe = 0 ∀α ∈ R+.

Proposition 2.2.5. Any non-zero sln-module contains a primitive element.

Proof. Cf. Prop1.1.2.

We can once again observe, that by applying Xα to elements of a certain weightspace we can again
raise or lower their weight similar to the way we let X,Y act in the first section.

2.3 Irreducible sln-Modules

To gain better insight on how to distinctly classify representations of sln, we are going to study
modules, that are generated by primitive elements. These are again very similar to the ones
mentioned in the first section, but for this too, we will need another, more general concept which
will be introduced in the following. As mentioned in the introduction, this is an almost philosophical
explanation of the idea, rather than a rigorous definition7.

2.3.1 The Universal Enveloping Algebra

Definition 2.3.1
A universal enveloping algebra (Ug, π) of g is a pair of an associative algebra with unit, and a
linear map π, satisfying the following properties:

1. π([X,Y ]) = π(X)π(Y )− π(Y )π(X) ∀X,Y ∈ g

2. Ug is π-invariant and especially generated by elements π(X) (X ∈ g), in the sense that there
is no Lie algebra, properly contained in Ug which also contains every π(X).

3. For every other associative Lie algebra a with unit and a linear map ρ, which satisfies the
given ”commutator condition”, there exists a homomorphism ϕ : Ug → a such that ϕ(1) = 1
and ϕ(π(X) = ρ(X).

Fact 2.3.2
The representations of Ug correspond to those of g.

Example 2.3.3
Let g = sl2(C) with the basis as defined above. The universal algebra Ug is then given by the
associative algebra with unit, generated by three elements x, y, h, satisfying only the relations:

hx− xh = 2x,

hy − yh = −2y,

xy − yx = h,

and a linear map π : sln → Ug, such that π(x) = X, π(y) = Y, π(H) = h.

2.4 sln-Modules Generated by Primitive Elements

Let V be an arbitrary sln-module, e ∈ Vχ a primitive element and V1 = (Usln) · e the module
generated by e.

Fact 2.4.1
The weights of V1 are of the form χ−

∑n−1
i=1 miαi (mi ≥ 0).

Proof. We will not prove this rigorously but it follows from the fact, that Usln can be decomposed
into the tensor product of the universal algebra of y and the borel-algebra b, and that the universal
algebra of y is generated by monomials. Cf. [Ser92] Ch.7, Th. 3.1.

7Cf. [Hal15] Sect. 9.3
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Theorem 2.4.2.

(i) Any primitive element v ∈ V1 of weight χ is a multiple of e.

(ii) V1 is irreducible.

Proof.

(i) Follows from the proof by construction of 2.4.1.

(ii) Suppose: V1 = V ′ ⊕ V ′′, and v = v′ + v′′.
Consider the weightspace (V1)χ = V ′

χ ⊕ V ′′
χ which implies that v′ and v′′ are both of weight

χ. As we know from (i) they must be multiples of v, hence, one must be zero (we will choose
v′′ = 0). We then get: v′ = v =⇒ V ′ = V1 =⇒ V ′′ = 0.

Theorem 2.4.3. Let V, V ′, V ′′ be irreducible sln-modules.

(i) V contains a unique primitive element (up to multiplication by elements of C). The weight
of this element is specified to be the highest weight of V.

(ii) If V ′, V ′′ have the same highest weight, they are isomorphic.

Proof.

(i) V contains at least one primitive element (2.2.5). Let v, v′ be primitive elements with weight
χ and χ′ respectively.
From 2.4.2 we have:

χ− χ′ =

n−1∑
i=1

miαi , (1)

χ′ − χ =

n−1∑
i=1

m′
iαi (mi,m

′
i ≥ 0∀i) (2)

which implies mi = m′
i = 0 =⇒ χ = χ′. The scalar multiplicity follows directly from

2.4.2.(ii).

(ii) Let v′ ∈ V ′ and v′′ ∈ V ′′ be the respective primitive elements, each of weight χ. Consider
V ′⊕V ′′ and the corresponding primitive element v = (v′, v′′), which is also of weight χ. The
sln-submodule W of V ′ × V ′′ generated by v is irreducible (2.4.2) and the projection map
πi : W → Vi is non-zero. According to Schur’s Lemma8 such an homomorphism between
irreducible Lie algebra modules is either an isomorphism or zero, hence V ′, V ′′ are both
isomorphic to W and therefore V ′ ∼= V ′′.

2.5 Classification of Irreducible sln-Modules

After stating Theorem 2.4.3 the only thing we need in order to classify all irreducible sln modules
uniquely, is a way of determining the highest weight of an arbitrary, irreducible sln-module.
Let χ ∈ h, then χ(λ1, . . . , λn) = u1λ1 + . . .+ unλn.

Theorem 2.5.1. An irreducible sln−module with highest weight χ exists if and only if the difference
of coefficients ui and uj is a positive integer for all i < j.

To prove this theorem there is a bit of groundwork to do first:

8Cf. [Hal15]Ch. 4.5 Th.4.29
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Proof of necessity

Let V be an irreducible sl-module with primitive element e of weight χ. We know, that there is
an Hα such that ui − uj = χ(Hα) for the positive root α = λi − λj ∈ R+. Using this it suffices to
prove that χ(Hα) is an integer under the given conditions. First off we will prove, that since V is
an sln module the same (or at least similar) formulas will hold, as we did when studying sl2:

Lemma 2.5.2. Let V be an irreducible sln-module, e0 ∈ Vχ a primitive element and
eαm = ( 1

m! )X
m
−α · e0 then:

(i) H · eαm = (χ−mα)(H)eαm,

(ii) X−α · eαm = (m+ 1)eαm+1,

(iii) Xα · eαm = (χ(Hα)−m+ 1)eαm−1.

Proof.

(i) This formula basically states the fact, that eαm ∈ Vχ−mα, which directly follows from the way
X−α

9 acts on elements in Vχ.

(ii) X−αe
α
m = X−α · 1

m!X
m
−α · e0 = (m+ 1) 1

(m+1)!X
m+1
−α e0 = (m+ 1)eαm+1.

(iii) This is proved via induction on m:
For m=0 the formula holds10.

m ·Xαe
α
m = XαX−αe

α
m−1 = [X,Y ]eαm−1 +X−αXαe

α
m−1

= (χ(Hα)− (m− 1)α(Hα))e
α
m−1 + (m− 1)(χ(Hα)−m+ 2)eαm−1

= m(χ(Hα)−m+ 1)eαm−1

The last step uses the earlier remark: ”α(Hα) = 2 is always true”.

Observation
As any module V is assumed to be finite dimensional, the number of possible weights is finite as
well, hence there must be an integer m, such that eαm+1 = 0.
If we combine this observation with formula (iii) we get:

Xαe
α
m+1 = 0 = (χ(Hα −m)eαm =⇒ χ(Hα) = m.

Proof of sufficiency

Now we need to prove, that there is a sln-module of highest weight χ, under the assumption that
the pairwise difference of all coefficients of χ is an positive integer.
We rewrite the definition of χ by introducing linear forms π1, . . . , πn−1 with πi =

∑i
k=1 λk and

integers m1, . . . ,mn−1:

χ =

n−1∑
i=1

miπi

Proposition 2.5.3. Let χ, χ′ be the highest weights of modules V and V ′, then:

(i) χ+ χ′ is the highest weight of an irreducible module W ⊆ V ⊗ V ′.

(ii) The set of highest weights is closed under addition.

Proof. Let v, v′ be the primitive elements of V, V ′ and corresponding weight χ, χ′.

(i) If v and v′ are the primitive elements of V and V ′, then v⊗v′ is a primitive element of V ⊗V ′

of weight χ + χ′. Due to (Th.2.4.2) the submodule generated by v ⊗ v′ is an irreducible sl-
module with highest weight χ+ χ′.

(ii) this follows from (i).

9Taking up the role Y had in the sl2-case
10by convention e−1 = 0
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We can apply this last proposition to the πi’s we defined earlier and prove that they are the highest
weights of their respective submodules.

Proposition 2.5.4. Let V be Cn, and consider it a sln-module, with Vi being the i-th exterior
Power of V (1 ≤ i ≤ n− 1). Then Vi is an irreducible sln-module of highest weight πi.

Proof. The canonical basis of V is given by e1, . . . , en and we define vi = e1 ∧ . . . ∧ ei, which is a
primitive element of Vi, with weight πi. For proving the irreducibility of Vi we apply monomials of
the X−α’s to vi, allowing us to obtain any term of the form em1

∧ . . . ∧ emi
which also concludes

the proof of Theorem 2.5.1.
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