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In the following, the ground field is C and the Lie algebras considered are finite-
dimensional.

1 Cartan Subalgebra

1.1 Definition of Cartan subalgebras

Let g be a Lie algebra, and a a subalgebra of g.

Definition 1. The normalizer of a in g is defined to be the set n(a) of all x
∈ g such that ad(x)(a) ⊂ a. It is the largest subalgebra of g which contains a and
in which a is an ideal.

Definition 2. A subalgebra h of g is called a Cartan subalgebra (CSA) of g
if it satisfies the following two conditions:

(a) h is nilpotent.

(b) h = n(h)

1.2 Examples of Cartan subalgebras

1. Any nilpotent Lie algebra is its own Cartan subalgebra.

2. The algebra D of all diagonal matrices is a Cartan subalgebra of gln:

Since D is abelian, it is clearly a nilpotent Lie algebra. So it remains to
show that D = n(D). (For sake of clarity, we consider only the case n=2,
but for other cases, the same argument holds.) Let B ∈ n(D). For any
A ∈D we get:

ad(B)(A) = (a1 0
0 a2

)⋅(b1,1 b1,2
b2,1 b2,2

)−(b1,1 b1,2
b2,1 b2,2

)⋅(a1 0
0 a2

) = (a1 ⋅ b1,1 a1 ⋅ b1,2
a2 ⋅ b2,1 a2 ⋅ b2,2

)−

(a1 ⋅ b1,1 a2 ⋅ b1,2
a1 ⋅ b2,1 a2 ⋅ b2,2

) = ( 0 (a1 − a2) ⋅ b1,2
(a1 − a2) ⋅ b2,1 0

) ∈D
As this must hold for any A ∈D, it in particular holds when a1 ≠ a2. Thus
b1,2 = b2,1 = 0 and B ∈ D. Therefore n(D) ⊂ D. Together with D ⊂ n(D)
(what clearly holds) D = n(D) follows.

3. sln has the Cartan subalgebra h of diagonal matrices with trace 0.

For n = 2: h = {(a 0
0 −a) ∣a ∈ C}
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To show this, one can use similar arguments as above.

4. The Cartan subalgebra of SO2n is the set S of matrices of the form

⎛
⎜
⎝

A1 ... 0
⋅ ⋅ ⋅

0 ... An

⎞
⎟
⎠
(with Ai = (

0 ai
−ai 0

) , ai ∈ C) as Cartan subalgebra.

Again, we will show this for the case n=2 and all the other cases fol-
low similarly. We first verify that S is nilpotent. Let A,B ∈ S. [A,B] =
⎛
⎜⎜⎜
⎝

0 a1 0 0
−a1 0 0 0
0 0 0 a2
0 0 −a2 0

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

0 b1 0 0
−b1 0 0 0
0 0 0 b2
0 0 −b2 0

⎞
⎟⎟⎟
⎠
−
⎛
⎜⎜⎜
⎝

0 b1 0 0
−b1 0 0 0
0 0 0 b2
0 0 −b2 0

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

0 a1 0 0
−a1 0 0 0
0 0 0 a2
0 0 −a2 0

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜
⎝

a1 ⋅ b1 − b1 ⋅ a1 0 0 0
0 a2 ⋅ b2 − b2 ⋅ a2 0 0
0 0 a3 ⋅ b3 − b3 ⋅ a3 0
0 0 0 a4 ⋅ b4 − b4 ⋅ a4

⎞
⎟⎟⎟
⎠
= 0

Ô⇒ [g,g] = 0.

Next we want to argue why n(S) = S. Let C ∈ n(S). For all D ∈ S:

ad(C)(D) =
⎛
⎜⎜⎜
⎝

0 c1,2 c1,3 c1,4
−c1,2 0 c2,3 c2,4
−c1,3 −c2,3 0 c3,4
−c1,4 −c2,4 −c3,4 0

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

0 d1 0 0
−d1 0 0 0
0 0 0 d2
0 0 −d2 0

⎞
⎟⎟⎟
⎠
−
⎛
⎜⎜⎜
⎝

0 d1 0 0
−d1 0 0 0
0 0 0 d2
0 0 −d2 0

⎞
⎟⎟⎟
⎠
⋅

⎛
⎜⎜⎜
⎝

0 c1,2 c1,3 c1,4
−c1,2 0 c2,3 c2,4
−c1,3 −c2,3 0 c3,4
−c1,4 −c2,4 −c3,4 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

−d1 ⋅ c1,2 0 −d2 ⋅ c1,4 d2 ⋅ c1,3
0 d1 ⋅ −c1,2 −d2 ⋅ c2,4 d2 ⋅ c2,3

−d1 ⋅ −c2,3 d1 ⋅ −c1,3 −d2 ⋅ c3,4 0
−d1 ⋅ −c2,4 d1 ⋅ −c1,4 0 d2 ⋅ −c3,4

⎞
⎟⎟⎟
⎠
−

⎛
⎜⎜⎜
⎝

d1 ⋅ −c1,2 0 d1 ⋅ c2,3 d1 ⋅ c2,4
0 −d1 ⋅ c1,2 −d1 ⋅ c1,3 −d1 ⋅ c1,4

d2 ⋅ −c1,4 d2 ⋅ −c2,4 d2 ⋅ −c3,4 0
−d2 ⋅ −c1,3 −d2 ⋅ −c2,3 0 −d2 ⋅ c3,4

⎞
⎟⎟⎟
⎠
∈ S

Ô⇒ −d2 ⋅ c1,4 − d1 ⋅ c2,3 = −(−d1 ⋅ −c2,3 − d2 ⋅ −c1,4), so 2 ⋅ d2 ⋅ c1,4 = 0 and
therefore (since this holds for any d2) c1,4 = 0. Analogously c1,3 = 0.
Ô⇒ 0 = −d2c2,4 + d1c1,3 = −d2c2,4, so c2,4 = 0. Analogously c2,3 = 0.
Ô⇒ C ∈ S and therefor n(S) = S.

We will see later that indeed, every Lie algebra has a Cartan subalgebra.

2 Regular Elements: Rank

Let g be a Lie algebra.

2.1 The Characteristic Polynomial of ad x

If x ∈ g, we will let Px(T ) denote the characteristic polynomial of the endomor-
phism ad x defined by x. We have

Px(T ) = det(T − ad(x)). (1)

2



Let n = dim g. We can write Px(T) in the form

Px(T ) =
n

∑
i=0

ai(x)T i. (2)

If x has coordinates x1, ..., xn (with respect to a fixed basis of g), we can view
ai(x) as a function of the n complex variables x1, ..., xn. It is a homogeneous
polynomial of degree n − 1 in x1, ..., xn.

2.2 The Rank and Regular Elements

Definition 3. The rank of g is the least integer l such that the function al is
not idendically zero.

Since an = 1, we must have l ≤ n with equality iff g is nilpotent.
On the other hand, if x is a nonzero element of g then ad(x)(x) = 0, showing
that 0 is an eigenvalue of ad x. It follows that if g ≠ 0 then a0 = 0, so that l ≥ 1.

Definition 4. An element x ∈ g is said to be regular if al(x) ≠ 0.

3 The Cartan Subalgebra Associated with a Reg-
ular Element

Let g be a Lie algebra.

Definition 5. Let x be an element of g. If λ ∈ C, we let gλx denote the set of
y ∈ g such that (ad(x)−λ)py = 0 for sufficiently large p and call it the nilspace
of ad(x) − λ.

In particular, g0x is the nilspace of ad x. Its dimension is the multiplicity of 0 as
an eigenvalue of ad x; that is, the least integer i such that ai(x) ≠ 0.

Proposition 1. Let x ∈ g. Then:

(a) g is the direct sum of the nilspaces gλx

(b) [gλx,gµx] ⊂ gλ+µx if λ,µ ∈ C .

(c) g0x is a Lie subalgebra of g.

Remark: The inclusion in (b) is in general no equality. For instance, for µ = λ
the left-hand side is zero, while the right-hand side might be larger.

For a concrete example, consider x ∶= (1 0
0 −1) ∈ gl2(C) =∶ g, µ = λ = 0:

ad(x)((a b
c d

)) = ( 0 2b
−2c 0

) Ô⇒ D ⊂ g0x (here b=c=0). For general p

(ad(x)p((a b
c d

)) = ( 0 2pb
(−2)pc 0

). For the right-hand side to become 0, b

and c need to be 0. Ô⇒ g0x ⊂D.
Then gλ+µx = gλx = gµx = g0x = D is the nilspace of ad(x). But since diagonal
matrices commute [gλx,gµx] = [g0x,g0x] = {0}.
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Proof.

(a) This is a standard property of vectorspace endomorphisms applied to adx.

(b) Let y ∈ gλx, z ∈ gµx. We want to show that, then [y, z] ∈ gλ+µx . Now we can
use induction to prove the following formula:

(ad x − λ − µ)n[y, z] =
n

∑
p=0
(n
p
)[(ad x − λ)py, (ad x − µ)n−pz] (3)

BC: (ad x − λ − µ)0[y, z] = [y, z] = ∑0
p=0 (0p)[(ad x − λ)

py, (ad x − µ)0−pz].

IS: For simplicity cn(p) ∶= [(ad x − λ)py, (ad x − µ)n−pz].

∑n+1
p=0 (n+1p )[(ad x − λ)

py, (ad x − µ)n+1−pz] =
∑n

p=1 (n+1p )cn+1(p) + cn+1(0) + cn+1(n + 1) =
∑n

p=1((np)cn+1(p) + (
n

p−1)cn+1(p)) + cn+1(0) + cn+1(n + 1) =
∑n

p=1((np)cn+1(p)) + cn+1(0) +∑
n−1
p=0 ((np)cn+1(p + 1)) + cn+1(n + 1) =

∑n
p=0 (np)(cn+1(p) + cn+1(p + 1)) =
∑n

p=0 (np)([(ad x − λ)py, (ad x − µ)n+1−pz] + [(ad x − λ)p+1y, (ad x −
µ)n−pz])=
∑n

p=0 (np)([(ad x − λ)
py, [x, (ad x − µ)n−pz]] − µ[(ad x − λ)py, (ad x −

µ)n−pz] + [[x, (ad x − λ)py], (ad x − µ)n−pz] − λ[(ad x − λ)py, (ad x −
µ)n−pz])=
(By Jacobi-Identity)

∑n
p=0 (np)([x, [(adx−λ)

py, (adx−µ)n−pz]]−(µ+λ)[(adx−λ)py, (adx−
µ)n−pz])=
(ad x − λ − µ)(∑n

p=0 (np)[(ad x − λ)
py, (ad x − µ)n−pz])

(By IH)
= (ad x − λ − µ)n+1[y, z].

If we now take n sufficiently large in the just proven formula, all terms on
the right vanish, showing that [y, z] is indeed in gλ+µx .

(c) Follows from (b), applied to the case λ = µ = 0.

Theorem 1. If x is regular, g0x is a Cartan subalgebra of g; its dimension is
equal to the rank l of g.

This provides a construction for Cartan subalgebras; we shall see that, in fact,
it gives all of them.

4 Conjugacy of Cartan Subalgebras

Let g be a Lie algebra. We let G denote the inner automorphism group of g that
is, the subgroup of Aut(g) generated by the automorphisms ead(y) for y ∈ g.

Theorem 2. The group G acts transitively on the set of CSAs of g.
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Combining both theorems, we deduce:

Corollary 1. The dimension of a CSA of g is equal to the rank of g.

Corollary 2. Every CSA of g has the form g0x for some regular element x of g.

5 The Semisimple Case

Theorem 3. Let h be a CSA of a semisimple Lie algebra g. Then:

(a) The restriction of the Killing form of g to h is nondegenerate.

(b) h is abelian.

(c) The centralizer of h is h.

(d) Every element of h is semisimple.

Proof.

(a) By Corollary 2 to Theorem 2, there is a regular element x such that h = g0x.
Let g = g0x ⊕∑λ≠0 gλx be the canonical decomposition of g with respect to
x (cf. Prop. 1).
Let B denote the Killing form of g. Then by applying Cartan’s criterion to
h and to the representation ad:h→ End(g), we see that Tr(adx○ady) = 0
for x ∈ h and y ∈ [h,h]. So together with proposition 1 for λ,µ ∈ C
with λ + µ ≠ 0: B(gλx,gµx) = B([h,gλx],gµx) = B(h, [gλx,gµx]) ⊂ B(h,gλ+µx ) =
B(h, [h,gλ+µx ]) = B([h,h],gλ+µx ) = 0. This shows that gλx and gµx are or-
thogonal with respect to B.
We therefore have a decomposition of gx into mutually orthogonal sub-
spaces g = g0x⊕∑λ≠0(gλx ⊕ g−λx ). Since B is nondegenerate, so is its restric-
tion to each of these subspaces, giving (a) since h = g0x.

(b) Like above Tr(adx○ady) = 0 for x ∈ h and y ∈ [h,h]. In other words, [h,h]
is orthogonal to h with respect to the Killing form B. Because of (a), this
implies that [h,h] = 0.

(c) Being abelian, h is contained in its own centralizer c(h). Moreover, c(h)
is clearly contained in the normalizer n(h) of h. Since n(h) = h , we have
c(h) = h.

(d) Let x ∈ h and let s ( resp. n) be its semisimple (resp. nilpotent) component.
If y ∈ h, then y commutes with x. By construction, n and s are polynomials
of x and an element that commutes with x also so commutes with any
polynomial in x, hence also with s and n. So y commutes with both n and
s. We therefore have s, n ∈ c(h) = h. However, since y and n commute and
ad(n) is nilpotent, ad(y) ○ ad(n) is also nilpotent and its trace B(y, n) is
zero. Thus n is orthogonal to every element of h. Since it belongs to h, n
is zero by (a). Thus x = s which shows that x is indeed semisimple.
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From (b) follows:

Corollary 1. h is a maximal abelian subalgebra of g.

Since any regular element is contained in a Cartan subalgebra of g, we get:

Corollary 2. Every regular element of g is semisimple.

One can show that every maximal abelian subalgebra of g consisting of semisim-
ple elements is a Cartan subalgebra of g. However, if g ≠ 0 there are maximal
abelian subalgebras of g which contain nonzero nilpotent elements, and are
therefore not Cartan subalgebras.
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