Cartan subalgebras

Feline Bailer

December 15, 2023

In the following, the ground field is \mathbb{C} and the Lie algebras considered are finitedimensional.

1 Cartan Subalgebra

1.1 Definition of Cartan subalgebras

Let \mathfrak{g} be a Lie algebra, and \mathfrak{a} a subalgebra of \mathfrak{g}.
Definition 1. The normalizer of \mathfrak{a} in \mathfrak{g} is defined to be the set $\mathfrak{n}(\mathfrak{a})$ of all x $\in \mathfrak{g}$ such that $\operatorname{ad}(x)(\mathfrak{a}) \subset \mathfrak{a}$. It is the largest subalgebra of \mathfrak{g} which contains \mathfrak{a} and in which \mathfrak{a} is an ideal.

Definition 2. A subalgebra \mathfrak{h} of \mathfrak{g} is called a Cartan subalgebra (CSA) of \mathfrak{g} if it satisfies the following two conditions:
(a) \mathfrak{h} is nilpotent.
(b) $\mathfrak{h}=\mathfrak{n}(\mathfrak{h})$

1.2 Examples of Cartan subalgebras

1. Any nilpotent Lie algebra is its own Cartan subalgebra.
2. The algebra \mathfrak{D} of all diagonal matrices is a Cartan subalgebra of $\mathfrak{g l}_{\mathfrak{n}}$:

Since \mathfrak{D} is abelian, it is clearly a nilpotent Lie algebra. So it remains to show that $\mathfrak{D}=\mathfrak{n}(\mathfrak{D})$. (For sake of clarity, we consider only the case $n=2$, but for other cases, the same argument holds.) Let $B \in n(\mathfrak{D})$. For any $A \in \mathfrak{D}$ we get:
$\operatorname{ad}(B)(A)=\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right) \cdot\left(\begin{array}{ll}b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2}\end{array}\right)-\left(\begin{array}{cc}b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2}\end{array}\right) \cdot\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right)=\left(\begin{array}{ll}a_{1} \cdot b_{1,1} & a_{1} \cdot b_{1,2} \\ a_{2} \cdot b_{2,1} & a_{2} \cdot b_{2,2}\end{array}\right)-$ $\left(\begin{array}{ll}a_{1} \cdot b_{1,1} & a_{2} \cdot b_{1,2} \\ a_{1} \cdot b_{2,1} & a_{2} \cdot b_{2,2}\end{array}\right)=\left(\begin{array}{cc}0 & \left(a_{1}-a_{2}\right) \cdot b_{1,2} \\ \left(a_{1}-a_{2}\right) \cdot b_{2,1} & 0\end{array}\right) \in \mathfrak{D}$
As this must hold for any $A \in \mathfrak{D}$, it in particular holds when $a_{1} \neq a_{2}$. Thus $b_{1,2}=b_{2,1}=0$ and $B \in \mathfrak{D}$. Therefore $\mathfrak{n}(\mathfrak{D}) \subset \mathfrak{D}$. Together with $\mathfrak{D} \subset \mathfrak{n}(\mathfrak{D})$ (what clearly holds) $\mathfrak{D}=\mathfrak{n}(\mathfrak{D})$ follows.
3. $\mathfrak{s l}_{\mathfrak{n}}$ has the Cartan subalgebra \mathfrak{h} of diagonal matrices with trace 0 .

For $n=2: \mathfrak{h}=\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right) \right\rvert\, a \in \mathbb{C}\right\}$

To show this, one can use similar arguments as above.
4. The Cartan subalgebra of $\mathcal{S O}_{2 n}$ is the set S of matrices of the form $\left(\begin{array}{ccc}A_{1} & \ldots & 0 \\ & \ldots & \\ 0 & \ldots & A_{n}\end{array}\right)$ (with $\left.A_{i}=\left(\begin{array}{cc}0 & a_{i} \\ -a_{i} & 0\end{array}\right), a_{i} \in \mathbb{C}\right)$ as Cartan subalgebra.
Again, we will show this for the case $\mathrm{n}=2$ and all the other cases follow similarly. We first verify that S is nilpotent. Let $A, B \in S .[A, B]=$ $\left.\begin{array}{l}\left(\begin{array}{cccc}0 & a_{1} & 0 & 0 \\ -a_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{2} \\ 0 & 0 & -a_{2} & 0\end{array}\right) \cdot\left(\begin{array}{cccc}0 & b_{1} & 0 & 0 \\ -b_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{2} \\ 0 & 0 & -b_{2} & 0\end{array}\right)-\left(\begin{array}{cccc}0 & b_{1} & 0 & 0 \\ -b_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{2} \\ 0 & 0 & -b_{2} & 0\end{array}\right) \cdot\left(\begin{array}{ccc}0 & a_{1} & 0 \\ -a_{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & a_{2} \\ 0 & 0 & -a_{2} \\ 0\end{array}\right) \\ \left(\begin{array}{ccc}a_{1} \cdot b_{1}-b_{1} \cdot a_{1} & 0 & 0 \\ 0 & a_{2} \cdot b_{2}-b_{2} \cdot a_{2} & 0 \\ 0 & 0 & a_{3} \cdot b_{3}-b_{3} \cdot a_{3} \\ 0 & 0 & 0\end{array} a_{4} \cdot b_{4}-b_{4} \cdot a_{4}\right.\end{array}\right)=0$ (

Next we want to argue why $\mathfrak{n}(S)=S$. Let $C \in \mathfrak{n}(S)$. For all $D \in S$:

$$
\begin{aligned}
& \operatorname{ad}(C)(D)=\left(\begin{array}{cccc}
0 & c_{1,2} & c_{1,3} & c_{1,4} \\
-c_{1,2} & 0 & c_{2,3} & c_{2,4} \\
-c_{1,3} & -c_{2,3} & 0 & c_{3,4} \\
-c_{1,4} & -c_{2,4} & -c_{3,4} & 0
\end{array}\right) \cdot\left(\begin{array}{cccc}
0 & d_{1} & 0 & 0 \\
-d_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & d_{2} \\
0 & 0 & -d_{2} & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & d_{1} & 0 & 0 \\
-d_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & d_{2} \\
0 & 0 & -d_{2} & 0
\end{array}\right) . \\
& \left(\begin{array}{cccc}
0 & c_{1,2} & c_{1,3} & c_{1,4} \\
-c_{1,2} & 0 & c_{2,3} & c_{2,4} \\
-c_{1,3} & -c_{2,3} & 0 & c_{3,4} \\
-c_{1,4} & -c_{2,4} & -c_{3,4} & 0
\end{array}\right)=\left(\begin{array}{cccc}
-d_{1} \cdot c_{1,2} & 0 & -d_{2} \cdot c_{1,4} & d_{2} \cdot c_{1,3} \\
0 & d_{1} \cdot-c_{1,2} & -d_{2} \cdot c_{2,4} & d_{2} \cdot c_{2,3} \\
-d_{1} \cdot-c_{2,3} & d_{1} \cdot-c_{1,3} & -d_{2} \cdot c_{3,4} & 0 \\
-d_{1} \cdot-c_{2,4} & d_{1} \cdot-c_{1,4} & 0 & d_{2} \cdot-c_{3,4}
\end{array}\right)- \\
& \left(\begin{array}{cccc}
d_{1} \cdot-c_{1,2} & 0 & d_{1} \cdot c_{2,3} & d_{1} \cdot c_{2,4} \\
0 & -d_{1} \cdot c_{1,2} & -d_{1} \cdot c_{1,3} & -d_{1} \cdot c_{1,4} \\
d_{2} \cdot-c_{1,4} & d_{2} \cdot-c_{2,4} & d_{2} \cdot-c_{3,4} & 0 \\
-d_{2} \cdot-c_{1,3} & -d_{2} \cdot-c_{2,3} & 0 & -d_{2} \cdot c_{3,4}
\end{array}\right) \in S \\
& \Longrightarrow-d_{2} \cdot c_{1,4}-d_{1} \cdot c_{2,3}=-\left(-d_{1} \cdot-c_{2,3}-d_{2} \cdot-c_{1,4}\right) \text {, so } 2 \cdot d_{2} \cdot c_{1,4}=0 \text { and } \\
& \text { therefore (since this holds for any } d_{2} \text {) } c_{1,4}=0 \text {. Analogously } c_{1,3}=0 \text {. } \\
& \Longrightarrow 0=-d_{2} c_{2,4}+d_{1} c_{1,3}=-d_{2} c_{2,4} \text {, so } c_{2,4}=0 \text {. Analogously } c_{2,3}=0 . \\
& \Longrightarrow C \in S \text { and therefor } \mathfrak{n}(S)=S \text {. }
\end{aligned}
$$

We will see later that indeed, every Lie algebra has a Cartan subalgebra.

2 Regular Elements: Rank

Let \mathfrak{g} be a Lie algebra.

2.1 The Characteristic Polynomial of ad x

If $x \in \mathfrak{g}$, we will let $P_{x}(T)$ denote the characteristic polynomial of the endomorphism $a d x$ defined by x. We have

$$
\begin{equation*}
P_{x}(T)=\operatorname{det}(T-a d(x)) . \tag{1}
\end{equation*}
$$

Let $n=\operatorname{dim} \mathfrak{g}$. We can write $P_{x}(\mathrm{~T})$ in the form

$$
\begin{equation*}
P_{x}(T)=\sum_{i=0}^{n} a_{i}(x) T^{i} \tag{2}
\end{equation*}
$$

If x has coordinates x_{1}, \ldots, x_{n} (with respect to a fixed basis of g), we can view $a_{i}(x)$ as a function of the n complex variables x_{1}, \ldots, x_{n}. It is a homogeneous polynomial of degree $n-1$ in x_{1}, \ldots, x_{n}.

2.2 The Rank and Regular Elements

Definition 3. The rank of \mathfrak{g} is the least integer l such that the function a_{l} is not idendically zero.

Since $a_{n}=1$, we must have $l \leq n$ with equality iff g is nilpotent.
On the other hand, if x is a nonzero element of \mathfrak{g} then $\operatorname{ad}(x)(x)=0$, showing that 0 is an eigenvalue of $a d x$. It follows that if $\mathfrak{g} \neq 0$ then $a_{0}=0$, so that $l \geq 1$.

Definition 4. An element $x \in \mathfrak{g}$ is said to be regular if $a_{l}(x) \neq 0$.

3 The Cartan Subalgebra Associated with a Regular Element

Let \mathfrak{g} be a Lie algebra.
Definition 5. Let x be an element of \mathfrak{g}. If $\lambda \in \mathbb{C}$, we let $\mathfrak{g}_{x}^{\lambda}$ denote the set of $y \in \mathfrak{g}$ such that $(a d(x)-\lambda)^{p} y=0$ for sufficiently large p and call it the nilspace of $a d(x)-\lambda$.

In particular, \mathfrak{g}_{x}^{0} is the nilspace of $a d x$. Its dimension is the multiplicity of 0 as an eigenvalue of $a d x$; that is, the least integer i such that $a_{i}(x) \neq 0$.

Proposition 1. Let $x \in \mathfrak{g}$. Then:
(a) \mathfrak{g} is the direct sum of the nilspaces $\mathfrak{g}_{x}^{\lambda}$
(b) $\left[\mathfrak{g}_{x}^{\lambda}, \mathfrak{g}_{x}^{\mu}\right] \subset \mathfrak{g}_{x}^{\lambda+\mu}$ if $\lambda, \mu \in \mathbb{C}$.
(c) \mathfrak{g}_{x}^{0} is a Lie subalgebra of \mathfrak{g}.

Remark: The inclusion in (b) is in general no equality. For instance, for $\mu=\lambda$ the left-hand side is zero, while the right-hand side might be larger.
For a concrete example, consider $x:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \in \mathfrak{g l}_{2}(\mathbb{C})=: \mathfrak{g}, \mu=\lambda=0$:
$\operatorname{ad}(x)\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}0 & 2 b \\ -2 c & 0\end{array}\right) \Longrightarrow \mathfrak{D} \subset \mathfrak{g}_{x}^{0}($ here $\mathrm{b}=\mathrm{c}=0)$. For general p $\left(a d(x)^{p}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}0 & 2^{p} b \\ (-2)^{p} c & 0\end{array}\right)\right.$. For the right-hand side to become $0, \mathrm{~b}$ and c need to be $0 . \Longrightarrow \mathfrak{g}_{x}^{0} \subset \mathfrak{D}$.
Then $\mathfrak{g}_{x}^{\lambda+\mu}=\mathfrak{g}_{x}^{\lambda}=\mathfrak{g}_{x}^{\mu}=\mathfrak{g}_{x}^{0}=\mathfrak{D}$ is the nilspace of $\operatorname{ad}(x)$. But since diagonal matrices commute $\left[\mathfrak{g}_{x}^{\lambda}, \mathfrak{g}_{x}^{\mu}\right]=\left[\mathfrak{g}_{x}^{0}, \mathfrak{g}_{x}^{0}\right]=\{0\}$.

Proof.
(a) This is a standard property of vectorspace endomorphisms applied to $a d x$.
(b) Let $y \in \mathfrak{g}_{x}^{\lambda}, z \in \mathfrak{g}_{x}^{\mu}$. We want to show that, then $[y, z] \in \mathfrak{g}_{x}^{\lambda+\mu}$. Now we can use induction to prove the following formula:

$$
\begin{equation*}
(a d x-\lambda-\mu)^{n}[y, z]=\sum_{p=0}^{n}\binom{n}{p}\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{n-p} z\right] \tag{3}
\end{equation*}
$$

BC: $(a d x-\lambda-\mu)^{0}[y, z]=[y, z]=\sum_{p=0}^{0}\binom{0}{p}\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{0-p} z\right]$.
IS: For simplicity $c_{n}(p):=\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{n-p} z\right]$.

$$
\begin{aligned}
& \sum_{p=0}^{n+1}\binom{n+1}{p}\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{n+1-p} z\right]= \\
& \sum_{p=1}^{n}\binom{n+1}{p} c_{n+1}(p)+c_{n+1}(0)+c_{n+1}(n+1)= \\
& \sum_{p=1}^{n}\left(\binom{n}{p} c_{n+1}(p)+\binom{n}{p-1} c_{n+1}(p)\right)+c_{n+1}(0)+c_{n+1}(n+1)= \\
& \sum_{p=1}^{n}\left(\binom{n}{p} c_{n+1}(p)\right)+c_{n+1}(0)+\sum_{p=0}^{n-1}\left(\binom{n}{p} c_{n+1}(p+1)\right)+c_{n+1}(n+1)= \\
& \sum_{p=0}^{n}\binom{n}{p}\left(c_{n+1}(p)+c_{n+1}(p+1)\right)= \\
& \sum_{p=0}^{n}\binom{n}{p}\left(\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{n+1-p} z\right]+\left[(a d x-\lambda)^{p+1} y,(a d x-\right.\right. \\
& \left.\left.\mu)^{n-p} z\right]\right)= \\
& \left.\sum_{p=0}^{n} \begin{array}{l}
n \\
p
\end{array}\right)\left(\left[(a d x-\lambda)^{p} y,\left[x,(a d x-\mu)^{n-p} z\right]\right]-\mu\left[(a d x-\lambda)^{p} y,(a d x-\right.\right. \\
& \left.\mu)^{n-p} z\right]+\left[\left[x,(a d x-\lambda)^{p} y\right],(a d x-\mu)^{n-p} z\right]-\lambda\left[(a d x-\lambda)^{p} y,(a d x-\right. \\
& \left.\left.\mu)^{n-p} z\right]\right)= \\
& (\text { By Jacobi-Identity) } \\
& \sum_{p=0}^{n}\binom{n}{p}\left(\left[x,\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{n-p} z\right]\right]-(\mu+\lambda)\left[(a d x-\lambda)^{p} y,(a d x-\right.\right. \\
& \left.\left.\mu)^{n-p} z\right]\right)= \\
& (a d x-\lambda-\mu)\left(\sum_{p=0}^{n}\binom{n}{p}\left[(a d x-\lambda)^{p} y,(a d x-\mu)^{n-p} z\right]\right) \\
& \text { (By IH) } \\
& =(a d x-\lambda-\mu)^{n+1}[y, z] .
\end{aligned}
$$

If we now take n sufficiently large in the just proven formula, all terms on the right vanish, showing that $[\mathrm{y}, \mathrm{z}]$ is indeed in $\mathfrak{g}_{x}^{\lambda+\mu}$.
(c) Follows from (b), applied to the case $\lambda=\mu=0$.

Theorem 1. If x is regular, \mathfrak{g}_{x}^{0} is a Cartan subalgebra of \mathfrak{g}; its dimension is equal to the rank l of \mathfrak{g}.

This provides a construction for Cartan subalgebras; we shall see that, in fact, it gives all of them.

4 Conjugacy of Cartan Subalgebras

Let \mathfrak{g} be a Lie algebra. We let G denote the inner automorphism group of \mathfrak{g} that is, the subgroup of $\operatorname{Aut}(\mathfrak{g})$ generated by the automorphisms $e^{\text {ad(y) }}$ for $y \in \mathfrak{g}$.

Theorem 2. The group G acts transitively on the set of CSAs of \mathfrak{g}.

Combining both theorems, we deduce:
Corollary 1. The dimension of a CSA of \mathfrak{g} is equal to the rank of \mathfrak{g}.
Corollary 2. Every CSA of \mathfrak{g} has the form \mathfrak{g}_{x}^{0} for some regular element x of \mathfrak{g}.

5 The Semisimple Case

Theorem 3. Let \mathfrak{h} be a CSA of a semisimple Lie algebra \mathfrak{g}. Then:
(a) The restriction of the Killing form of \mathfrak{g} to \mathfrak{h} is nondegenerate.
(b) \mathfrak{h} is abelian.
(c) The centralizer of \mathfrak{h} is \mathfrak{h}.
(d) Every element of \mathfrak{h} is semisimple.

Proof.
(a) By Corollary 2 to Theorem 2, there is a regular element x such that $\mathfrak{h}=\mathfrak{g}_{x}^{0}$. Let $\mathfrak{g}=\mathfrak{g}_{x}^{0} \oplus \sum_{\lambda \neq 0} \mathfrak{g}_{x}^{\lambda}$ be the canonical decomposition of \mathfrak{g} with respect to x (cf. Prop. 1).
Let B denote the Killing form of \mathfrak{g}. Then by applying Cartan's criterion to \mathfrak{h} and to the representation ad: $\mathfrak{h} \rightarrow \operatorname{End}(g)$, we see that $\operatorname{Tr}(\operatorname{ad} x \circ$ ady $)=0$ for $x \in \mathfrak{h}$ and $y \in[\mathfrak{h}, \mathfrak{h}]$. So together with proposition 1 for $\lambda, \mu \in \mathbb{C}$ with $\lambda+\mu \neq 0: B\left(\mathfrak{g}_{x}^{\lambda}, \mathfrak{g}_{x}^{\mu}\right)=B\left(\left[\mathfrak{h}, \mathfrak{g}_{x}^{\lambda}\right], \mathfrak{g}_{x}^{\mu}\right)=B\left(\mathfrak{h},\left[\mathfrak{g}_{x}^{\lambda}, \mathfrak{g}_{x}^{\mu}\right]\right) \subset B\left(\mathfrak{h}, \mathfrak{g}_{x}^{\lambda+\mu}\right)=$ $B\left(\mathfrak{h},\left[\mathfrak{h}, \mathfrak{g}_{x}^{\lambda+\mu}\right]\right)=B\left([\mathfrak{h}, \mathfrak{h}], \mathfrak{g}_{x}^{\lambda+\mu}\right)=0$. This shows that $\mathfrak{g}_{x}^{\lambda}$ and \mathfrak{g}_{x}^{μ} are orthogonal with respect to B.
We therefore have a decomposition of \mathfrak{g}_{x} into mutually orthogonal subspaces $\mathfrak{g}=\mathfrak{g}_{x}^{0} \oplus \sum_{\lambda \neq 0}\left(\mathfrak{g}_{x}^{\lambda} \oplus \mathfrak{g}_{x}^{-\lambda}\right)$. Since B is nondegenerate, so is its restriction to each of these subspaces, giving (a) since $\mathfrak{h}=\mathfrak{g}_{x}^{0}$.
(b) Like above $\operatorname{Tr}(a d x \circ a d y)=0$ for $x \in \mathfrak{h}$ and $y \in[\mathfrak{h}, \mathfrak{h}]$. In other words, $[\mathfrak{h}, \mathfrak{h}]$ is orthogonal to \mathfrak{h} with respect to the Killing form B. Because of (a), this implies that $[\mathfrak{h}, \mathfrak{h}]=0$.
(c) Being abelian, \mathfrak{h} is contained in its own centralizer $\mathfrak{c}(\mathfrak{h})$. Moreover, $\mathfrak{c}(\mathfrak{h})$ is clearly contained in the normalizer $\mathfrak{n}(\mathfrak{h})$ of \mathfrak{h}. Since $\mathfrak{n}(\mathfrak{h})=\mathfrak{h}$, we have $\mathfrak{c}(\mathfrak{h})=\mathfrak{h}$.
(d) Let $x \in \mathfrak{h}$ and let s (resp. n) be its semisimple (resp. nilpotent) component. If $y \in \mathfrak{h}$, then y commutes with x . By construction, n and s are polynomials of x and an element that commutes with x also so commutes with any polynomial in x , hence also with s and n . So y commutes with both n and s. We therefore have $s, n \in \mathfrak{c}(\mathfrak{h})=\mathfrak{h}$. However, since y and n commute and $a d(n)$ is nilpotent, $a d(y) \circ a d(n)$ is also nilpotent and its trace $B(y, n)$ is zero. Thus n is orthogonal to every element of \mathfrak{h}. Since it belongs to \mathfrak{h}, n is zero by (a). Thus $x=s$ which shows that x is indeed semisimple.

From (b) follows:
Corollary 1. \mathfrak{h} is a maximal abelian subalgebra of \mathfrak{g}.
Since any regular element is contained in a Cartan subalgebra of \mathfrak{g}, we get:
Corollary 2. Every regular element of \mathfrak{g} is semisimple.
One can show that every maximal abelian subalgebra of g consisting of semisimple elements is a Cartan subalgebra of \mathfrak{g}. However, if $\mathfrak{g} \neq 0$ there are maximal abelian subalgebras of \mathfrak{g} which contain nonzero nilpotent elements, and are therefore not Cartan subalgebras.

