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In the following, the ground field is C and the Lie algebras considered are finite-
dimensional.

1 Cartan Subalgebra

1.1 Definition of Cartan subalgebras
Let g be a Lie algebra, and a a subalgebra of g.

Definition 1. The normalizer of a in g is defined to be the set n(a) of all x
€ g such that ad(z)(a) c a. It is the largest subalgebra of g which contains a and
in which a is an ideal.

Definition 2. A subalgebra b of g is called a Cartan subalgebra (CSA) of g
if it satisfies the following two conditions:

(a) b is nilpotent.

(b) b=n(h)

1.2 Examples of Cartan subalgebras
1. Any nilpotent Lie algebra is its own Cartan subalgebra.
2. The algebra ® of all diagonal matrices is a Cartan subalgebra of gl,:
Since ® is abelian, it is clearly a nilpotent Lie algebra. So it remains to

show that © =n(®). (For sake of clarity, we consider only the case n=2,
but for other cases, the same argument holds.) Let B € n(®). For any

Ae® we get:

0\ /(b b b b a; O a;-b ai-b
dABYA) = [® (011 b12) [011 O12) (a1 _[@1:011 a1-012)_
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ai-ba1 az-bao (ar —az) b2 0

As this must hold for any A € ®, it in particular holds when a; # as. Thus
bi2=bs1=0and Be®. Therefore n(D) c ®. Together with ® c n(D)
(what clearly holds) ® =n(®) follows.

3. sl, has the Cartan subalgebra h of diagonal matrices with trace 0.

For n = 2: h:{(g _Oa)|a€(C}



To show this, one can use similar arguments as above.

4. The Cartan subalgebra of SO, is the set S of matrices of the form

A .. 0 0
0 .. A, i

Again, we will show this for the case n=2 and all the other cases fol-
low similarly. We first verify that S is nilpotent. Let A, B € S. [A,B] =
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) ,a; € C) as Cartan subalgebra.

0 aq

—a1 0

0 0

0 0
=0

Next we want to argue why n(S) = S. Let C € n(S). For all D € S:

0 C1,2 €13 Ci4 0 d 0 0 0 d
—C1,2 0 c23 caall-di O 0 O -d; 0
ad(C)(D) = —c13 —caz 0 el O 0 0 do] O 0
—c14 —C2a4 —Cc3a4 O 0 0 -dy O 0 0
0 Cl2 €3 Cia —di-ci2 0 —dy-ci1a4 da-cis
—C1,2 0 c23 Coal 0 di-—c12 —dg-cou da-cags
-c13 —Cc23 0 c34 —dy-—c3 di-—c13 —da-c3a 0
—C1,4 —C24 —C34 0 ~dy - —C2.4 dy - —C1,4 0 do - —C3,4
dy-—cip2 0 dy-co3 di-cag
O —d1 . 0172 —d1 . 6173 —d1 . 0174 c S
dy-—c14  do-—c24 do2--c34 0
—dy-—c13 —d2-—ca3 0 —d3-c3.4
— —dg *Cl4 — d1 *C2.3 = —(—d1 c—=C2,3 — dg . —6174), so 2- d2 *Cl4 = 0 and
therefore (since this holds for any ds) ¢1,4 = 0. Analogously ¢ 3 = 0.
= 0 = —docou +dic1,3 = —daca 4, S0 ca4 = 0. Analogously ca3 = 0.

== (C €S and therefor n(S) = S.

We will see later that indeed, every Lie algebra has a Cartan subalgebra.

2 Regular Elements: Rank

Let g be a Lie algebra.

2.1 The Characteristic Polynomial of ad x

If x € g, we will let P,(T) denote the characteristic polynomial of the endomor-

phism ad x defined by x. We have

P.(T) = det(T - ad(x)).

(1)

a2



Let n = dim g. We can write P,(T) in the form
Py(T) = a;(2)T". (2)
i=0

If z has coordinates 1, ...,x, (with respect to a fixed basis of g), we can view
a;(z) as a function of the n complex variables x1,...,z,. It is a homogeneous
polynomial of degree n—1 in x1, ..., T,.

2.2 The Rank and Regular Elements

Definition 3. The rank of g is the least integer | such that the function a; is
not idendically zero.

Since a,, =1, we must have [ <n with equality iff g is nilpotent.
On the other hand, if x is a nonzero element of g then ad(x)(z) = 0, showing
that 0 is an eigenvalue of ad z. It follows that if g # 0 then a¢ = 0, so that [ > 1.

Definition 4. An element z € g is said to be regular if a;(x) # 0.

3 The Cartan Subalgebra Associated with a Reg-
ular Element

Let g be a Lie algebra.

Definition 5. Let x be an element of g. If X € C, we let g) denote the set of
y € g such that (ad(x) - NPy =0 for sufficiently large p and call it the nilspace
of ad(z) - A.

In particular, g0 is the nilspace of ad x. Its dimension is the multiplicity of 0 as
an eigenvalue of ad x; that is, the least integer ¢ such that a;(z) # 0.

Proposition 1. Let x € g. Then:
(a) g is the direct sum of the nilspaces g

) [a), 0" cgd if \ueC .
(c) 8% is a Lie subalgebra of g.

Remark: The inclusion in (b) is in general no equality. For instance, for g = A
the left-hand side is zero, while the right-hand side might be larger.

For a concrete example, consider x := ((1) _01 eglh(C)=g,u=X=0:

a b)) (0 2 = ® c g2 (here b=c=0). For general p

ad(w)((c d -2c¢ 0

oo b 0 2Pp : .
(ad(z)?( e d ) = (=2 0 ) For the right-hand side to become 0, b

and ¢ need to be 0. = g% c®.
Then g)** = g) = g = g2 = ® is the nilspace of ad(x). But since diagonal
matrices commute [g), g#] = [a%,a°] = {0}.



Proof.
(a) This is a standard property of vectorspace endomorphisms applied to adz.

(b) Let y € g}, 2 € g*. We want to show that, then [y, 2] € g2**. Now we can
use induction to prove the following formula:

(0 =20 [:21 = 3, (0)itadz =2y tada- vz (@)
BC: (adz = A=)y, 2] = [y.2] = Epoo () [(ad 2 = NPy, (ad & = )°"72].

IS: For simplicity ¢, (p) := [(ad z = APy, (ad x — )" Pz].

ko (M) (ad @ - APy, (ad - p) ™+ Pz]

ZZ=1 (n;1)0n+1(p) + Cn+l(0) + Cn+1(77f + 1) =

ZZ=1((Z)Cn+1(P) + ( )le(p)) +cns1(0) + cpa(n+1) =
22:1((Z)C"+1(p)) + Cn+1(0) + Zn 1((p)0n+1(p + 1)) + Cn+1(n + 1) =
ZZ:O (Z)(Cnﬂ(p) +epi(pt+ 1)) =

Yp=0 (Z]))([(ad x - MNPy, (ad z — p)""1P2] + [(ad x — N\)P*y, (ad x -
)" Pz])=

Yoo () ([(ad & = NPy, [z, (ad & — p)"P2]] - pl(ad & = N)Py, (ad = ~

[[z, (ad z — N)Py], (ad x — u)"Pz] = N[ (ad x = NPy, (ad x —

(By Jacobi-Identity)

Yoo () ([, [(adz=A)Py, (adz—p)"P2]]=(u+N) [(adz-N)Py, (adz~
)" pZ])

(adz A= p)(Zpoo (3)[(ad = N)Py, (ad x — p)"P2])

(By IH)

= (adx =\ - p)" [y, 2].

If we now take n sufficiently large in the just proven formula, all terms on
the right vanish, showing that [y, z] is indeed in g)**.
(c) Follows from (b), applied to the case A =y =0.
O

Theorem 1. If z is reqular, g0 is a Cartan subalgebra of g; its dimension is
equal to the rank [l of g.

This provides a construction for Cartan subalgebras; we shall see that, in fact,
it gives all of them.

4 Conjugacy of Cartan Subalgebras

Let g be a Lie algebra. We let G denote the inner automorphism group of g that
is, the subgroup of Aut(g) generated by the automorphisms e**®) for y € g.

Theorem 2. The group G acts transitively on the set of CSAs of g.



Combining both theorems, we deduce:

Corollary 1. The dimension of a CSA of g is equal to the rank of g.

Corollary 2. Every CSA of g has the form g° for some reqular element x of g.
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The Semisimple Case

Theorem 3. Let ) be a CSA of a semisimple Lie algebra g. Then:

(a) The restriction of the Killing form of g to b is nondegenerate.

(b) b is abelian.

(c) The centralizer of b is .

(d) Every element of b is semisimple.

Proof.

(a)

By Corollary 2 to Theorem 2, there is a regular element x such that b = g.
Let g = g% @ ¥,.0 92 be the canonical decomposition of g with respect to
x (cf. Prop. 1).

Let B denote the Killing form of g. Then by applying Cartan’s criterion to
b and to the representation ad:h - End(g), we see that Tr(adzoady) =0
for x € h and y € [h,h]. So together with proposition 1 for A\,u € C
with A +p # 0: B(gg)c\vgg) = B([bvg?ﬂ\]’gg) = B(b, [92795]) c B(hag;\ﬂt) =
B(b,[h,92]) = B([h,h],92™) = 0. This shows that g and g/ are or-
thogonal with respect to B.

We therefore have a decomposition of g, into mutually orthogonal sub-
spaces g = g0 ® ¥, .0(g2 ®g;"). Since B is nondegenerate, so is its restric-
tion to each of these subspaces, giving (a) since h = g2.

Like above Tr(adzoady) =0 for x € h and y € [h, h]. In other words, [h,h]
is orthogonal to b with respect to the Killing form B. Because of (a), this
implies that [h,h] =0.

Being abelian, b is contained in its own centralizer ¢(f). Moreover, ¢(bh)
is clearly contained in the normalizer n(fh) of . Since n(h) = h , we have

c(h) =b.

Let x € h and let s ( resp. n) be its semisimple (resp. nilpotent) component.
If y € b, then y commutes with x. By construction, n and s are polynomials
of x and an element that commutes with x also so commutes with any
polynomial in x, hence also with s and n. So y commutes with both n and
s. We therefore have s,n € ¢(h) = h. However, since y and n commute and
ad(n) is nilpotent, ad(y) o ad(n) is also nilpotent and its trace B(y,n) is
zero. Thus n is orthogonal to every element of h. Since it belongs to h, n
is zero by (a). Thus x = s which shows that z is indeed semisimple.

O



From (b) follows:

Corollary 1. b is a mazimal abelian subalgebra of g.

Since any regular element is contained in a Cartan subalgebra of g, we get:
Corollary 2. FEvery reqular element of g is semisimple.

One can show that every maximal abelian subalgebra of g consisting of semisim-
ple elements is a Cartan subalgebra of g. However, if g # 0 there are maximal
abelian subalgebras of g which contain nonzero nilpotent elements, and are
therefore not Cartan subalgebras.



