University of Heidelberg Seminar on Lie Algebras

Simple and semisimple Lie Algebras

Second talk

Contents

1 Simple and semisimple Lie Algebras 2
1.1 Simple Lie Algebras 2
1.2 Semisimple Lie Algebras 2
1.3 Cartan's Criterion 3
1.4 Killing Form 4
1.4.1 Criterion for Semisimplicity 5
1.4.2 Example on $\mathfrak{s l}_{n}(\mathbb{F})$ 6
1.4.3 Example on $\mathfrak{g l}_{n}(\mathbb{F})$ 7
1.5 Simple Ideals of a Semisimple Lie Algebra 7
References 7

Simple and semisimple Lie Algebras

1.1 Simple Lie Algebras

Definition 1.1.1.
We call a Lie Algebra \mathfrak{g} simple if:
(i) \mathfrak{g} is non-abelian, and
(ii) the only ideals of \mathfrak{g} are $\{0\}$ or \mathfrak{g} itself.

1.2 Semisimple Lie Algebras

Definition 1.2.1.

We call a Lie Algebra \mathfrak{g} semisimple if:
(i) All abelian ideals of \mathfrak{g} are $\{0\} \Longleftrightarrow($ ii) the radical \mathfrak{r} of \mathfrak{g} being $\{0\}$.

Example 1.2.2. :
(i) $\mathfrak{s l}_{n}(V)$ is semisimple.
(ii) $\mathfrak{s l}_{2}(V)$ is semisimple.
(iii) $\mathfrak{s o}_{2 n+1}(V)$ is semisimple.
(iv) $\mathfrak{s o}_{2 n}(V)$ is semisimple.
(v) $\mathfrak{s p}_{2 n}(V)$ is semisimple.
(vi) $\mathfrak{g l}_{n}(V)$ is not semisimple.

We will continue with $\mathfrak{s l}_{2}(V), \mathfrak{s l}_{n}(V)$, and $\mathfrak{g l}_{n}(V)$ in Chapter 1.4.

1.3 Cartan's Criterion

Lemma 1.3.1. Let $A, B \subseteq \mathfrak{g l}_{n}(V)$ with $\operatorname{dim}(V)<\infty$. Define $M=\left\{x \in \mathfrak{g l}_{n}(V) \mid[x, B] \subseteq\right.$ $A\}$. Now suppose for $x \in M: \operatorname{Tr}(x y)=0$ for all $y \in M \Longrightarrow x$ is nilpotent.

Proof. Proof in Humphreys, Lemma 4.3 Cartan's Criterion (Page 19).
Theorem 1.3.2 (Cartan's Criterion). Let L be a subalgebra of $\mathfrak{g l}_{n}(V)$ with $\operatorname{dim}(V)<\infty$. Suppose $\operatorname{Tr}(x y)=0$ for all $x \in[L, L]$ and for all $y \in L \Longrightarrow L$ is solvable.

Proof. Now we need to prove that $[L, L]$ is nilpotent, which means that all $x \in[L, L]$ are nilpotent elements. We apply Lemma 1.3 .1 on V , any vector space, with $A=[L, L]$, $B=L$:

$$
\begin{aligned}
& M=\left\{x \in \mathfrak{g l}_{n}(\mathbb{F}) \mid[x, L] \subseteq[L, L]\right\} \supseteq L \\
& \Longrightarrow L /[L, L] \text { is abelian. }
\end{aligned}
$$

We need to show: $x \in[L, L] \Longrightarrow \operatorname{Tr}(x y)=0$ for all $y \in L \Longrightarrow \mathrm{x}$ is nilpotent.
Suppose $[x, y]$ is the generator of $[L, L], z \in M$:

$$
\Longrightarrow \operatorname{Tr}([x, y] z)=\operatorname{Tr}(x[y, z])=\operatorname{Tr}([y, z] x)=0,
$$

the last equation holds because $[y, z] \in[L, L] \Longrightarrow x$ is nilpotent.

Corollary 1.3.3. Let L be a Lie algebra with $\operatorname{Tr}(\operatorname{ad}(x), \operatorname{ad}(y))=0$ for all $x \in[L, L]$ and for all $y \in L \Longrightarrow L$ is solvable.

Proof. This corollary follows directly by applying Theorem 1.3.2 (Cartan's Criterion) and Proposition 3.1 in Humphreys (Page 11).

1.4 Killing Form

Definition 1.4.1 (Killing Form).

Let L be a Lie Algebra and $x, y \in L$. We define the Killing form \mathfrak{K}_{L} as:

$$
\mathfrak{K}_{L}=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y)
$$

Then \mathfrak{K}_{L} is a bilinear form on our Lie Algebra L, called the Killing form.
Remark 1.4.2.
(i) \mathfrak{K}_{L} is associative, meaning that $\forall x, y, z \in L: \mathfrak{K}_{L}([x, y], z)=\mathfrak{K}_{L}(x,[y, z])$.

We can instantly see that from the properties of the trace (i.e., $\operatorname{Tr}([x, y], z)=\operatorname{Tr}(x,[y, z]))$.
(ii) \mathfrak{K}_{L} is skew-symmetric, which holds the following property $\forall x, y \in L: \mathfrak{K}_{L}(x, y)=$ $-\mathfrak{K}_{L}(y, x)$.

Lemma 1.4.3.
Let $I \subseteq L$ be an ideal of our Lie Algebra, \mathfrak{K}_{L} the Killing form over L, and \mathfrak{K}_{I} the Killing form of I. Then:

$$
\Longrightarrow \mathfrak{K}_{I}=\left.\mathfrak{K}_{L}\right|_{I}
$$

Proof.
If $\Phi: V \rightarrow W$ is a linear map, then $\operatorname{Tr}_{V}(\Phi)=\operatorname{Tr}_{W}\left(\left.\Phi\right|_{W}\right)$. Let $x \in I$, so $\operatorname{ad}_{x}(L) \subseteq I$. In matrix notation we get:

$$
\operatorname{ad}_{x}=\left(\begin{array}{cc}
0 & 0 \\
* & \left.\operatorname{ad}_{x}\right|_{I}
\end{array}\right)
$$

For $x, y \in I$, we have:

$$
\begin{gathered}
\Longrightarrow \operatorname{ad}_{x} \circ \operatorname{ad}_{y}=\left(\begin{array}{cc}
0 & 0 \\
* & \left.\operatorname{ad}_{x}\right|_{I}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
* & \left.\operatorname{ad}_{y}\right|_{I}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
* & \left.\left.\operatorname{ad}_{x}\right|_{I} \circ \operatorname{ad}_{y}\right|_{I}
\end{array}\right) \\
\left.\Longrightarrow \mathfrak{K}_{L}\right|_{I}=\operatorname{Tr}\left(\left.\operatorname{ad}_{x} \circ \operatorname{ad}_{y}\right|_{I}\right)=\operatorname{Tr}\left(\left.\left.\operatorname{ad}_{x}\right|_{I} \circ \operatorname{ad}_{y}\right|_{I}\right)=\mathfrak{K}_{I}
\end{gathered}
$$

1.4.1 Criterion for Semisimplicity

Theorem 1.4.1 (Cartan-Killing Criterion). A Lie Algebra L is called semisimple \Longleftrightarrow $\mathfrak{K}(X, Y)$ is nondegenerate.

Proof.
First, we have to prove that if $\operatorname{Rad}(L)=0 \Longrightarrow \operatorname{Rad}\left(\mathfrak{K}_{L}\right)=0$, where $\operatorname{Rad}\left(\mathfrak{K}_{L}\right)=\{x \in L \mid$ $\left.\mathfrak{K}_{L}(x, y)=0 \forall y \in L\right\}$. For this, we need to assume that $\operatorname{Rad}\left(\mathfrak{K}_{L}\right)$ is an ideal of L, meaning $\forall x \in L$ and $y \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right) \Longrightarrow[x, y] \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right)$. Let's take any $z \in L$:

$$
\mathfrak{K}_{L}([x, y], z)=\mathfrak{K}_{L}(x,[y, z])
$$

Since $y \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right)$, keep in mind that $\mathfrak{K}_{L}(y,[z, x])=0$. We continue the computation:

$$
\mathfrak{K}_{L}([x, y], z)=\mathfrak{K}_{L}(x,[y, z])=\mathfrak{K}_{L}([y, z], x)=\mathfrak{K}_{L}(y,[z, x])=0
$$

$\Longrightarrow[x, y] \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right)$, meaning $\operatorname{Rad}\left(\mathfrak{K}_{L}\right)$ is an ideal of L .
We can extend the statement to $\operatorname{ad}_{L}\left(\operatorname{Rad}\left(\mathfrak{K}_{L}\right)\right)$ being a solvable ideal in $\operatorname{ad}_{L}(L)$ using Theorem 1.3.2 (Cartan's Criterion). We get:

$$
\begin{gathered}
\operatorname{Tr}(\operatorname{ad} x, \operatorname{ad} y)=\mathfrak{K}_{L}=0 \forall x \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right) \supseteq\left[\operatorname{Rad}\left(\mathfrak{K}_{L}\right), \operatorname{Rad}\left(\mathfrak{K}_{L}\right)\right] \\
\forall y \in L \supseteq \operatorname{Rad}\left(\mathfrak{K}_{L}\right)
\end{gathered}
$$

$\mathfrak{z}\left(\operatorname{Rad}\left(\mathfrak{K}_{L}\right)\right)=\left\{z \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right) \mid \forall x \in \operatorname{Rad}\left(\mathfrak{K}_{L}\right):[x, z]=0\right\}$ is abelian and solvable. Since:

$$
\operatorname{ad}_{L}\left(\operatorname{Rad}\left(\mathfrak{K}_{L}\right)\right) \cong \operatorname{Rad}\left(\mathfrak{K}_{L}\right) / \mathfrak{z}\left(\operatorname{Rad}\left(\mathfrak{K}_{L}\right)\right)
$$

we conclude that $\operatorname{Rad}\left(\mathfrak{K}_{L}\right)$ is solvable.
As $\operatorname{Rad}\left(\mathfrak{K}_{L}\right) \subseteq \operatorname{Rad}(L) \Longrightarrow \operatorname{Rad}\left(\mathfrak{K}_{L}\right)=0$, this means that \mathfrak{K}_{L} is nondegenerate.
The second statement we need to show is that if $\operatorname{Rad}\left(\mathfrak{K}_{L}\right)=0 \Longrightarrow \operatorname{Rad}(L)=0$.
Let's assume L is not a semisimple Lie Algebra, so there exists an abelian ideal $I \subseteq L$:

$$
\begin{aligned}
& \Longrightarrow(\operatorname{ad} x \operatorname{ad} y)^{2}=0, x \in L, y \in I \\
& \Longrightarrow(\operatorname{ad} x \operatorname{ad} y) \text { is nilpotent } \\
& \Longrightarrow \mathfrak{K}_{L}=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y)=0 \forall x \in L, y \in I \\
& \Longrightarrow 0 \neq I \subseteq \operatorname{Rad}\left(\mathfrak{K}_{L}\right) \\
& \Longrightarrow \mathfrak{K}_{L} \text { is degenerate }
\end{aligned}
$$

1.4.2 Example on $\mathfrak{s l}_{n}(\mathbb{F})$

Remark 1.4.1 (continuation of Example 1.2.2). $\mathfrak{s l}_{n}(\mathbb{F})$ is a semisimple Lie Algebra.

Proof.

In the first part of the proof, we focus on showing that $k_{\mathfrak{S l}_{n}}(x, y)=2 n \operatorname{Tr}(x y)$ for all $x, y \in \mathfrak{s l}_{n}(\mathbb{F})$, which will be helpful to demonstrate that the Killing form is nondegenerate: If we examine the Killing form over $\mathfrak{g l}_{n}(\mathbb{F})$ with the basis $\left\{E_{i j}\right\}$, we obtain:

$$
\begin{aligned}
\operatorname{ad} E_{i j} \operatorname{ad} E_{k l}\left(E_{g h}\right) & =\left[E_{i j}, E_{k l} E_{g h}-E_{g h} E_{k l}\right] \\
& =\left[E_{i j}, \delta_{l g} E_{k h}-\delta_{h k} E_{g l}\right] \\
& =E_{i j}\left(\delta_{l g} E_{k h}-\delta_{h k} E_{g l}\right)-\left(\delta_{l g} E_{k h}-\delta_{h k} E_{g l}\right) E_{i j} \\
& =\delta_{l g} E_{i j} E_{k h}-\delta_{h k} E_{i j} E_{g l}-\delta_{l g} E_{k h} E_{i j}-\delta_{h k} E_{g l} E_{i j} \\
& =\delta_{l g} \delta_{j k} E_{i h}-\delta_{h k} \delta_{j g} E_{i l}-\delta_{l g} \delta_{h i} E_{k j}-\delta_{h k} \delta_{l i} E_{g j}
\end{aligned}
$$

Now, we focus on the (g, h) coordinate of the vector $\operatorname{ad}\left(E_{i j} \operatorname{ad}\left(E_{k l}\right)\left(E_{g h}\right)\right)$ in the basis of $\left(E_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq n}$:

$$
\begin{aligned}
& a_{g h}=\delta_{g i} \delta_{l g} \delta_{j k}-\delta_{i g} \delta_{l h} \delta_{h k} \delta_{j g}-\delta_{k g} \delta_{j h} \delta_{l g} \delta_{h i}-\delta_{j h} \delta_{g k} \delta_{l i} \\
& \Longrightarrow k_{\mathfrak{g l}_{n}}\left(E_{i j}, E_{k l}\right)=\sum_{g=1}^{n} a_{g g} \\
&=\sum_{g=1}^{n}\left(\delta_{g i} \delta_{l g} \delta_{j k}-\delta_{i g} \delta_{l g} \delta_{g k} \delta_{j g}-\delta_{k g} \delta_{j g} \delta_{l g} \delta_{g i}-\delta_{j g} \delta_{g k} \delta_{l i}\right) \\
&=n \delta_{i l} \delta_{j k}-\delta_{k l} \delta_{i j}-\delta_{i j} \delta_{k l}+n \delta_{j k} \delta_{i l} \\
&=2 n \delta_{i l} \delta_{j k}+2 \delta_{i j} \delta_{k l} \\
&=2 n \operatorname{Tr}\left(E_{i j} E_{k l}\right)-2 \operatorname{Tr}\left(E_{i j}\right) \operatorname{Tr}\left(E_{k l}\right)
\end{aligned}
$$

Using Lemma 1.4.3, $\operatorname{Tr}(x)=0$ for all $x \in \mathfrak{s l}_{n}(\mathbb{F})$, the bilinearity of the Killing form, and the fact that $\mathfrak{s l}_{n}$ is an ideal of $\mathfrak{g l}_{n}$, we get:

It remains to show that $k_{\mathfrak{s l}_{n}}$ is nondegenerate, so we can use Theorem 1.4.1: Let's assume we have a nonzero $x \in \mathfrak{s l}_{n}(\mathbb{F})$ such that $k_{\mathfrak{s l}_{n}}(x, y)=2 n \operatorname{Tr}(x y)=0$ for all $y \in \mathfrak{s l}_{n}(\mathbb{F})$. Considering $y=x$, since $x \neq 0 \Longrightarrow x^{2} \neq 0 \Longrightarrow k_{\mathfrak{s l}_{n}}(x, x)=2 n \operatorname{Tr}\left(x^{2}\right) \neq 0$, which is a
contradiction.

1.4.3 Example on $\mathfrak{g l}_{n}(\mathbb{F})$

Remark 1.4.1 (continuation of Example 1.2.2).
$\mathfrak{g l}_{n}(\mathbb{F})$ is not a semisimple Lie Algebra.

Proof. From the previous remark, we know that $k_{\mathfrak{g r}_{n}}(x, y)=2 n \operatorname{Tr}(x y)-2 \operatorname{Tr}(x) \operatorname{Tr}(y)$. Let's use $x=\lambda I$ for all $y \in \mathfrak{g l}_{n}$, which implies $\operatorname{Tr}(x)=n \lambda$ and $x y=y x=\lambda y$.
$\Longrightarrow k_{\mathfrak{g l}_{n}}(\lambda I, y)=2 n \operatorname{Tr}(\lambda y)-2 \operatorname{Tr}(\lambda I) \operatorname{Tr}(y)=2 n \lambda \operatorname{Tr}(y)-2 n \lambda \operatorname{Tr}(y)=0$
$\Longrightarrow k_{\mathfrak{g l}_{n}}$ is degenerate.

1.5 Simple Ideals of a Semisimple Lie Algebra

Definition 1.5.1 (Direct Sum).

A Lie Algebra L is a direct sum of ideals $I_{1}, I_{2}, \ldots, I_{n}$ if:

$$
L=I_{1} \oplus I_{2} \oplus \ldots \oplus I_{n}
$$

This means that each $x \in L$ can be uniquely represented as $x=x_{1}+x_{2}+\ldots+x_{n}$ with $x_{j} \in I_{j}$, and $I_{j} \cap I_{k}=\{0\}$ for all $j \neq k$.

Theorem 1.5.2.
If L is a semisimple Lie Algebra, then there exist ideals $L_{1}, L_{2}, \ldots, L_{n} \subseteq L$ such that:
(i) Each L_{i} is simple,
(ii) $L=L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}$.

Proof.

Bibliography

[Hum72] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972.
[Ser87] Jean-Pierre Serre, Complex semisimple Lie algebras, Springer-Verlag, New York, 1987, Translated from the French by G. A. Jones.

