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I. Basic notions

Let F be an arbitrary field throughout the dis-
cussion.

Definition I.1 (Lie algebra)
A Lie algebra L is a vector space L over a field F
together with a binary operation

[·, ·] : L × L → L,

called the corresponding (Lie-)bracket satisfying
the following axioms:

(L1) The bracket operation is bilinear.

(L2) [xx] = 0 ∀x ∈ L.

(L3) [x[yz]] + [y[zx]] + [z[xy]] = 0 ∀x, y, z ∈ L.

(L3) is often called the Jacobi identity.

In this talk it will always be assumed that
the underlying vector space of a Lie algebra is
finite dimensional over F.

Remark I.2 Similarly to the case of other well
known algebraic objects, several fundamental con-
cepts for Lie algebras are defined as follows.
A subspace K of L is called a (Lie-)subalgebra of L
if

[xy] ∈ K ∀x, y ∈ K.

A linear map ϕ : L → L′ between two Lie algebras
L and L′ is called a homomorphism if it preserves
the bracket, meaning

ϕ[xy] = [ϕ(x)ϕ(y)]

for all x, y ∈ L. Evidently, Im ϕ is then a subalge-
bra of L’. A homomorphism ϕ is called a monomor-

phism if ker ϕ = 0, an epimorphism if Im ϕ = L′,
and an isomorphism if it is both mono- and epi-
morphism. Two Lie algebras L and L′ are called
isomorphic if there exists an isomorphism of Lie
algebras ϕ : L → L′, i.e. a vector space isomor-
phism satisfying

ϕ[xy] = [ϕ(x)ϕ(y)].

An automorphism of L is an isomorphism of L
onto itself. The automorphisms of a Lie algebra L
form a group denoted by Aut L.

To give a first example of a Lie algebra, we
introduce the general linear algebra denoted
by gl(V):

Example I.3 (general linear algebra gl(V))
Consider a finite-dimensional vector space V over
the field F with dim V = n, and let End V denote
the space of all endomorphisms of V (i.e., all linear
transformations V → V). It can be easily verified
that End V forms a ring with the composition of
mappings as the ring multiplication and is also a
vector space over F with dimension n2. Introducing
a new operation End V × End V → End V defined
by

[x, y] = xy − yx,

called the bracket of x and y, End V becomes a
Lie algebra over F. To distinguish the vector space
structure of End V from this newly defined Lie
algebra structure, we denote End V as a Lie algebra
by using the notation gl(V) and call it the general
linear algebra. This construction for gl(V) applies
also in case that V is infinite-dimensional. Any
subalgebra of gl(V) is called a linear Lie algebra.
Fixing a basis for V one can identify gl(V) with the
set of all n × n matrices over F, denoted gl(n, F).
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We also want to introduce a couple of subal-
gebras of gl(V):

Example I.4 (linear Lie algebras)
To prove that the following examples are indeed Lie
algebras is an easy exercise.

Let sl(V) denote the special linear algebra
which consists of all endomorphisms having trace
zero.

Let o(V) denote the orthogonal algebra con-
sisting of all x ∈ gl(V) which fulfil f (x(v), w) =
− f (v, x(w)) for a non-degenerate bilinear form f
on V which is defined by the matrix s. The def-
inition for s depends on the dimension of V. If
dim V = 2l, let s = seven, if dim V = 2l + 1, let
s = sodd where seven and sodd are defined as:

seven :=
(

0 Il
Il 0

)
, sodd :=

1 0 0
0 0 Il
0 Il 0


Let t(n, F) be the set of all upper triangular ma-

trices, n(n, F) the set of all strictly upper trian-
gular matrices and d(n, F) the set of all diagonal
matrices in gl(n, F).

Remark I.5 We note that

t(n, F) = d(n, F) + n(n, F),

where the right hand side is a direct sum of vec-
tor spaces. Since [d(n, F), n(n, F)] = n(n, F), it
follows that

[t(n, F), t(n, F)] = n(n, F).

Further important definitions are:

Definition I.6 (ideal)
An ideal I of a Lie algebra L is a subspace I ⊂ L
so that it holds true that

x ∈ L, y ∈ I ⇒ [xy] ∈ I.

Example I.7 (center)
Next to the rather trivial examples of 0 (the subspace
composed solely of the zero vector) and L itself, a
less obvious example for an ideal is the center Z(L)
of L defined by

Z(L) = {z ∈ L s.t. [xz] = 0 ∀x ∈ L}.

Note that L is abelian precisely when its center is
equal to L.

Remark I.8 A noteworthy observation is that for
a homomorphism ϕ, ker(ϕ) is always an ideal of L.
Analogous to other algebraic theories, there exists a
natural one-to-one correspondence between homo-
morphisms and ideals: Ker(ϕ) is associated with ϕ,
and to an ideal I, the canonical map x 7→ x + I
of L onto L/I is assigned, where L/I denotes the
quotient algebra defined in the next definition.

Definition I.9 (quotient algebra)
Let L be a Lie algebra and I a proper nonzero ideal of
L. We construct the quotient algebra, taking L/I
as a quotient of vector spaces for the underlying
vector space of the quotient algebra and define a Lie
bracket on L/I via

[x + I, y + I] := [xy] + I

for all x, y ∈ L. Since this is well defined, L/I
becomes a Lie algebra.

To Lie algebras apply the standard homo-
morphism theorems as well, the proof of which
will not be provided as it follows analogously
to the case of other algebraic structures.

Proposition I.10 (homomorphism theorems)
Let L be a Lie algebra and let I, J be ideals of L.
(i) Let ϕ : L → L′ be a homomorphism of Lie
algebras. Then L/ker ϕ ∼= Im ϕ. For any ideal
I ⊂ ker ϕ of L there exists a unique homomor-
phism ψ : L/I → L′, so that the diagram

L L′

L/I

π

ϕ

ψ

commutes, where π denotes the canonical projec-
tion.
(ii) If I ⊂ J, then J/I is an ideal of L/I and there is
a natural isomorphism between (L/I)/(J/I) and
L/J.
(iii) (I + J)/J is naturally isomorphic to I/(I ∩ J).

For later purposes some more definitions
will be needed:
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Definition I.11 (normalizer, centralizer)
The normalizer of a subspace K of L is defined as:

NL(K) = {x ∈ L | [xK] ⊂ K}

In case K is a subalgebra, the Jacobi identity ensures
that NL(K) is again a subalgebra of L, the largest
subalgebra that contains K as an ideal. K is called
self-normalizing if K = NL(K).
For a subset X ⊂ L we define the centralizer of X
in L by

CL(X) := {x ∈ L | [xX] = 0}.

Definition I.12 (representation) Let V be a vector
space over F. A representation of a Lie algebra L on
V is a Lie algebra homomorphism

ϕ : L → gl(V)

While we stipulate that L must be finite-
dimensional, it is beneficial to permit V to have
arbitrary dimension. The most important ex-
ample of a representation for our purposes in
this talk will be the adjoint representation:

Example I.13 (adjoint representation)
The adjoint representation of a Lie algebra L is
defined by ad : L → gl(L) which sends x → [x ·],
so that

ad x (y) = [xy].

Remark I.14 We observe that the kernel of ad com-
prises precisely all x in L such that ad x equals
0, meaning [xy] = 0 for every y in L. Hence, the
kernel of ad precisely corresponds to the centre of
L, so ker ad = Z(L). In case L is simple which
implicates Z(L) = 0, this means ad : L → gl(L)
is a monomorphism. Consequently, any simple Lie
algebra, i.e. a non-abelian, no nonzero proper ideals
containing Lie algebra, is isomorphic to a linear Lie
algebra.

II. Nilpotency and Engel’s
theorem

i. Nilpotency

In order to formulate Engel’s theorem, we de-
velop the notion of a nilpotent Lie algebra.

Definition II.15 (lower central series)
Let L be a Lie algebra. Consider a sequence of ideals
of L defined by:

L0 := L

Li+1 := [L Li]

The sequence formed by the ideals of the form Li is
called lower central series.
We have

L1 = [L L]

and it is not difficult to verify that

[Li Lj] ⊂ Li+j.

Definition II.16 (nilpotent Lie algebra)
A Lie algebra L is called nilpotent if there exists
an n ∈ N, so that

Ln = 0

i.e. almost all terms of the lower central series
vanish.

Any abelian algebra, for example, is nilpo-
tent. A first observation is the following propo-
sition:

Proposition II.17 Let L be a Lie algebra.
(i) If L is nilpotent, then every subalgebra of L and
all images of L under homomorphisms are nilpotent.
(ii) If L/Z(L) is nilpotent, then L is nilpotent.
(iii) If L is nilpotent and nonzero, then Z(L) ̸= 0.

proof:
(i) If K is a subalgebra, then Ki ⊂ Li and there-
fore K is also nilpotent. To see that homomor-
phic images of L are nilpotent as well, consider
an epimorphism ϕ : L → M. By induction we
obtain ϕ(Li) = Mi and so M is nilpotent too.
(ii) Let n fulfil (L/Z(L))n = 0, then L(n) ⊂ Z(L)
which implies Ln+1 = [LLn] ⊂ [LZ(L)] = 0 and
so L is nilpotent.
(iii) Since the last non-vanishing term of the
lower central series of L is central and nonzero
⇒ Z(L) ̸= 0. □

Definition II.18 (ad-nilpotent)
Let L be a Lie algebra and x ∈ L. x is called ad-
nilpotent if ad x is a nilpotent endomorphism.
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Remark II.19 We realise that when L is nilpotent
then for some n ∈ N:

ad x1 ad x2 . . . ad xn(y) = 0

for all xi, y ∈ L. Particularly (ad x)n = 0 for all
x ∈ L. Therefore all elements of L are ad-nilpotent
if L is nilpotent. Engel’s theorem will ensure that
the converse holds true as well.

Before delving into Engel’s theorem, let’s
examine the following lemma, which will assist
us in proving Engel’s theorem.

Lemma II.20 If x ∈ gl(V) is a nilpotent endomor-
phism, then ad x is nilpotent as well.

proof (of Lemma II.20):
Let x ∈ gl(V) be nilpotent. We can associate to
x two endomorphisms of End V

λx, ρx : End V → End V

defined by λx(y) = xy and ρx(y) = yx, called
the left and right translation. λx and ρx
obviously commute and since x is nilpotent,
λx and ρx are nilpotent as well. Since in any
ring, sums and differences of commuting
nilpotent elements are again nilpotent, so is
ad x = λx − ρx. □

ii. Engel’s theorem

Finally, the necessary grounds are achieved to
formulate Engel’s theorem.

Theorem II.21 (Engel’s theorem)
If all elements of a Lie algebra L are ad-nilpotent,
then L is nilpotent.

Engel’s theorem will be derived from the
subsequent theorem, which holds its own sig-
nificance.

Theorem II.22 Let L ⊂ gl(V) be a subalgebra
consisting of nilpotent endomorphisms and V ̸= 0
finite dimensional. Then there exists a nonzero
v ∈ V with L.v = 0.

proof (of Theorem II.22):
This theorem will be proved using induction
on dim L. The statement for dim L = 0, 1 is ob-
vious, if one recalls that a nilpotent linear trans-
formation always has at least one eigenvector
to the eigenvalue zero. So now let dim L > 1
and let K ̸= L be a maximal proper subalgebra
of L. Lemma II.20 ensures that K acts as a Lie
algebra of nilpotent linear transformations via
ad on the vector space L, hence also on the vec-
tor space L/K, which is nontrivial because K is
a proper subalgebra. If ad K denotes the image
of K in gl(V), by induction hypothesis there
exists a nonzero(x ̸∈ K) element x + K ∈ L/K
so that

ad K.(x + K) = 0 ⇔ ad K.x = 0

⇔ [Kx] = 0 ⇔ [yx] = 0 ∀y ∈ K.

It follows that K ⊊ NL(K) = {x ∈ L | [xK] ⊂
K} since x ̸∈ K. Because N is a maximal
proper subalgebra of L, this directly implies
NL(K) = L. Therefore K is an ideal of L. We
claim now that dim L/K ≤ 1. To see that
suppose dim L/K > 1 Then L/K would al-
ways contain a proper one dimensional subal-
gebra. Its preimage under the projection map
π : L → L/K would be a proper subalgebra
properly containing K, which is a contradic-
tion.
Thus K has codimension one. This permitts us
to write for any z ∈ L \ K:

L = K + Fz.

Let now z ∈ L \ K and W = {v ∈ V | K.v = 0}.
By the induction hypothesis, W is nonzero. W
is stable under L because for x ∈ L, y ∈ K,
w ∈ W, it holds that

yx.w = xy.w − [xy]w = 0

since [xy] ∈ K because K is an ideal. Therefore
z -only acting on W- is a nilpotent endomor-
phism on W, which implies that it has at
least one nontrivial eigenvector w ∈ W to the
eigenvalue zero. This w fulfils now L.w = 0. □

Now Engel’s theorem follows quite easily.
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proof (of Engel’s theorem II.21):
Let L be a non-vanishing Lie algebra. We
will proof this theorem by induction on dim L.
With the bilinearity of the bracket it is easy
to see that every one dimensional Lie algebra
is abelian, hence solvable. Thus the theorem
holds for dim L = 1. Let now dim L be arbitray
and the statement be true for every number
smaller than dim L. Let every element of L be
ad-nilpotent, i.e. for all x ∈ L the endomor-
phism ad x is nilpotent. Since ad L consists
only of nilpotent elements, and it is a finite di-
mensional, nontrivial subalgebra of gl(L), ad L
satisfies the preconditions for theorem II.22.
Therefore there is a nonzero y ∈ L for which
(ad L).y = 0.

⇒ (ad L).y = [Ly] = 0
⇒ Z(L) ̸= 0 since y ∈ Z(L)
⇒ L/Z(L) ̸= L

So L/Z(L) has a smaller dimension than L and
since all elements of L/Z(L) are ad-nilpotent
as well, it follows that L/Z(L) is nilpotent by
the induction hypothesis.

⇒ ∃n ∈ N s.t. (L/Z(L))n = 0
⇒ Ln ⊂ Z(L)
⇒ Ln+1 = [LLn] ⊂ [LZ(L)] = 0
⇒ L is nilpotent

□
A corollary of significance arises from theo-

rem II.22 that is actually equivalent to theorem
II.22 itself. To articulate this corollary, the fol-
lowing definition will be needed.

Definition II.23 (flag)
Let V be a finite dimensional vector space of
dim V = n. A flag in V is a chain of subspaces

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V

where dimVi = i. x ∈ End V is said to stabilise
this flag if for all i it holds true that:

x(Vi) ⊂ Vi.

We conclude this section now with the
promised corollary.

Corollary II.24 Let L be a subalgebra of gl(V)
and V ̸= 0 finite dimensional. If L consists of
nilpotent endomorphisms, then there exists a flag
(Vi) in V which is stabilised by L and which fulfils
L.Vi ⊂ Vi−1 for all i.
Put differently, the matrices of L, expressed in a
suitable basis of V, all lie in n(n, F), i.e. are all
strictly upper triangular.

III. Solvability and Lie´s theorem

i. Solvability

Solvability will be defined in a manner very
similar to nilpotency, given their close relation-
ship. In fact, solvability will turn out to be a
generalisation of nilpotency.

Definition III.25 (derived series)
Let L be a Lie algebra. Consider a sequence of ideals
of L defined by:

L(0) := L

L(i+1) := [L(i) L(i)]

The sequence formed by the ideals of the form L(i)

is called derived series.

Definition III.26 (solvable Lie algebra)
A Lie algebra L is called solvable if there exists an
n ∈ N so that

L(n) = 0

i.e. almost all terms of the derived series vanish.

Every nilpotent algebra is solvable due to
the inclusion L(i) ⊂ Li. However, the contrary
is not necessarily true.

Proposition III.27 Let L be a Lie algebra
(i) Every subalgebra of L and all images of L under
homomorphisms are solvable if L is solvable.
(ii) If there exists a solvable ideal I of L so that L/I
is solvable, then L is also solvable.
(iii) If I, J are solvable ideals of L, then I + J is
solvable as well.

proof:
(i) The proof works analogously to the proof
of (i) of proposition II.17.
(ii) Let n fulfil (L/I)(n) = 0 and let π : L → L/I
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be the canonical homomorphism. Using (i) it
follows that π(L(n)) = 0 ⇔ L(n) ⊂ I = ker π.
With m fulfilling I(m) = 0 and (L(i))(j) = L(i+j)

we can conclude L(n+m) = 0
(iii) (I + J)/J ∼= I/(I ∩ J) follows from (iii)
of the homomorphism theorems I.10. Since
I/(I ∩ J) is a homomorphic image of I it is
solvable and so is (I + J)/J. By assumption
also J is solvable and with (ii) it follows that
(I + J)/J is solvable. □

ii. Lie’s theorem

For this last section the underlying field F will
be assumed to be algebraically closed and have
char F = 0. The main difficulty lies in proving
the following theorem which lets Lie’s theorem
follow as a corollary.

Theorem III.28 If L ⊂ gl(V) is a solvable subal-
gebra and V ̸= 0 is finite dimensional, then V con-
tains a common eigenvector for all endomorphisms
in L.

sketch of the proof:
The strategy employed to prove this theorem
closely resembles the approach used in the
proof of Theorem II.22. It involves induction
on the dimension of L, with the statement for
dim L = 0 being trivial. Then the idea is to
proceed via the following steps:
(1) find an ideal K of codimension one
(2) verify that for K there exist common eigen-
vectors (by induction)
(3) show that a space W of such eigenvectors
is stabilised by L
(4) for a z ∈ L with L = K + Fz, find an eigen-
vector of z in W.
This ensures then that there is a common eigen-
vector for all endomorphisms in L.

Corollary III.29 (Lie’s theorem)
If L ⊂ gl(V) is a solvable subalgebra and V is finite
dimensional, then there exists a flag of V which is
stabilised by L. That is to say there exists a basis V
for which the corresponding matrices of L all lie in
t(n, F), i.e. are all upper triangular.

proof:
To deduct Lie’s theorem as a corollary from

the previous theorem we use again induction
on the dimension of L. The statement is ob-
viously true for dim L = 0, so lets assume
dim L > 0 and the validity of the statement
for all m < dim L. Using theorem III.28 there
has to exist a nonzero v ∈ V that is a com-
mon eigenvector of L. Let now V1 := spanF(v).
Clearly dim V1 = 1, so dim V/V1 < dim L. By
induction hypothesis V/V1 permits therefore
a flag which is stabilised by L, say

0 = W0 ⊂ W1 ⊂ . . . ⊂ Wn−1 = V/V1.

With the preimage of this flag under the
canonical projection of V onto V/V1, one
obtains a flag of V that is stabilised by L. □

Now that we have established Lie’s theorem,
there are two additional interesting results that
can be derived as corollaries from the previous
theorems.

Corollary III.30 (of Lie’s theorem)
If L is solvable, then there exists a chain of ideals

0 = L0 ⊂ L1 ⊂ . . . ⊂ Ln = L

with dim Li = i.

proof:
Consider the adjoint representation ad : L →
gl(L). Since it is a finite dimensional represen-
tation, proposition III.27 (i) ensures that ad L is
solvable too. Due to Lie’s theorem it therefore
stabilises some flag of L, which is then a chain
of ideals in L. □

Corollary III.31 (of Engel’s and Lie’s theorem)
If L is solvable, then adL x is nilpotent for all x ∈
[LL]. Particularly, [LL] is nilpotent.

proof:
By the previous corollary we know that there
exists a flag (Li)i of L consisting of ide-
als. Let (x1, . . . , xn) be a basis of L so that
span(x1, . . . , xi) = Li. In this basis, the matrices
corresponding to ad L are all upper triangular,
hence in t(n, F). Since [t(n, F)t(n, F)] = n(n, F),
it follows that ad [LL] = [ad L, ad L] ⊂ n(n, F).
Therefore ad x is nilpotent for all x ∈ [LL] and
so by Engel’theorem [LL] is nilpotent. □
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