Vortrag 13 - Gerechtes Teilen eines Perlenkette
1: Einleitung
Gradidee Die Geometrie lasst sich auch für das Losen nicht-geometrischer Robleme nutzen.
Vorgehenswêße:
1) Parametrisierung des Panns aller möglichen dasungen
2) Définieren einer Funktion out diesem Roum Dese misst, innerveit sich eine
potenzielle Lösung von einer totsächlichen
potenzielle Lösung von einer tortsächlichen unterscheidet
3) Mithilfe der symmetrie feststellen, dass die Friktien an einem bestimmten Punkt greich Null 186.
2 Teîlen einer Perlentette
Situation « Kette mit zwei Sorten von Perlan -> Bufalige Reiherfolge

De kette soll gerecht auf Zwei Personen (48B) auf geteilt werden: - gerecht: Beide bekommen die gleiche Anzahlan weißen und Schwarzen Relen Figure 1: A necklace with two kinds of beads. -D 24 Perlen (12 W, 12s) Teilen mit einem Schnitt: Person A exhalt 7s und Person B exhalt 55 und 50 WF Zwei Schnitte: Person & exhalt mithleren Feil Person B exhalt de av Beren Wissen: A soll insgesamt 12 Perlen ethalten => zwischen den Schnitten (Pegen 12 Perlen Halten foot: Schnitt 1 nach Perle j => Schnitt 2 nach Perle j+12 Allgemein gilt: Kette hat insgesamt 2n Perlen => Schnitte liegen n Perlen asseinande · Wenn A de richtige Arsall an schwarzen Perlen erhalt, erhalt sie automodisch auch die richtige Anzahl an weßen

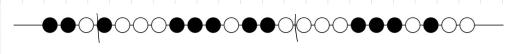


Figure 1: A necklace with two kinds of beads.

-> Moerlegung: Moerschuss wechselt in
ein Defizit
=> Es muss eine Stelle geben, an der die
richtige Anzahl an schwarzen und weißen
Perlen getroffen wird.

3: Parallelogramm der Mögichteiten
weiß, Schwarz
no Perlentette mit drei Sorten von Perlen
wird auf zwei Personen (A,B) aufgeteilt

Figure 3: A necklace with three kinds of beads.

Legen fest Perlentette mit

2s schwarzen, 2w weißen, 2g graven
Perlen

Ziel: Kette in vier Teile Pr. Pz. Pz. Py beilen, sodass:

o Pr. Pz enthalben s schwarze, w weiße und

g growe -DA -PzvPu -11
Sei n=S+W+g. ⇒ Kotte hat eine Perle bei peder ganzen Zaul von 1 bis 2n.

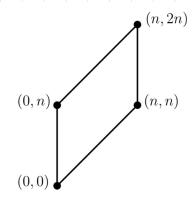


Figure 4: The parallelogram Q parametrizing certain divisions of the necklace.

re Jedem Punkt (x, y) mit ganzzahligen Koordinaten in a wird eine Teilung der kette in die vier Teile P1, P2 P3, P4 zugeordnet sodass *(P1) P3) - *(P2) P4)

1. Schuit nach Perle X

2. Schnit nach Peace y

3. Schnith nach Perle in Pos. Z = y-x+n dange der Teile. P1: x

Pz: y-x P3: 2-y = N-X P4: 2n-Z = X-y+N

Jede solche Teilung torrespondlert zu einem ganzzahligen Pont in Q.

tette als intervall (0, 2n)=> Teiling erfolgt in $P_1 = (0, x)$; $P_2 = (x, y)$ $P_3 = (y, y-x+n)$; $P_4 = (y-x+n, 2n)$

4 Moerprofen des Gerechtigkeit Non: geeignete Funktion aufstellen

montesschoss von schw. und gr.

Perlen

n P, v P3 an jedem

Punkt angeben. Zu (x,y) € Q ordnen das Paar (B-s, y-g) Zu 3 ist Anzahl der schwarzen Perleu in Pr und P3 Sei f(x,y) das Paar (x) das (x,y) zugeordneb wird. $\exists (x,y) \in Q \mid Sodass \mid f(x,y) = (0,0)$ Annahme =>P, und P3 enthalten asammen s schwarze and g grave Perten > Teiling gerecht Lange von P. und Pz ist n Perlen 1 s+g+w=n => richtige Anzahl w review in PUB Haben Funktion f festgelegt, die die Gerechtigeit der Teilung misst. Ziel Punkt finden an dem & gleich Null wird

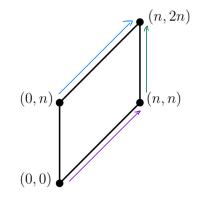


Figure 4: The parallelogram Q parametrizing certain divisions of the necklace.

ersten n' Perlen der Kotte

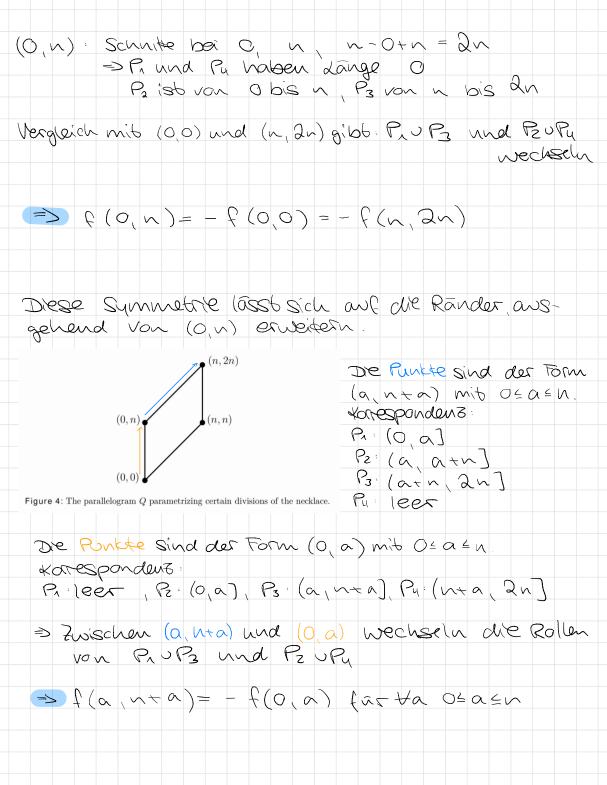
=> f kovetant

$$(n,n) \rightarrow (n,2n)$$
: $x=n \Rightarrow P_n$ bleibt gleich, enthalt die ersten n Perlen

=> tiber are gesamte kante hat ProPs die

3. Schnith: Z = y - x + n = y=> an gleicher Stelle wie der zweite Schnith
=> P, P3 entspricht wieder der ersten
Halfte der totte

=>
$$f$$
 is konstant von $(0,0)$ user (n,n) bis $(n,2n)$.



5: Noven finden Wenn f(0,0) = (0,0) ⇒ Ein Schnitt in der Mitte de tette gerecus Soust Annahme: erste koordinate von f(0,0) ist hugleich fr:=1. Koord: Zahlb den überschussoder Defizit der schwarzen Perleu in P. und Pz fr. = 2. Koord: Zant den Wesschusgoder Defizit der growen Perlen in P. und P. Retrachten & am Rand von Q von (0,0) nach (0, n) f(0,n) = -f(0,0) = 3 Vorzeichen von fi wechselt => an diesem Rand gelit fi eine ungerade Anzaul mal durch NULL Roblem: for konnte unemolich of Null sein Betrachten desnalls f. + 2, denn 2 < 1 und f. (0,0) ist ganzzahlig und ungleich NULL > Vorzeichen von f. + 2 wechselt am linken Rand von Q $f(0,n) = -f(n,2n) = 5 + \frac{1}{2}$ hab ungerade Auzahl an Novlen am Rand von (0,n) nach (n,2n)

Außerdem: f(a, n+a) = -f(0, a)Also f, + 2 postiv (boss neg.) am oberen Rand von Q für gede gambe Zahl a => f, + 2 negativ (boss pos) am linken Rand > f, + 2 wechselt Vorzeichen gleich of6 an oberen se am linten Rand. Da f an den anderen beiden Randern Konstant 186, gibt es teine weiteren Dukstellen von f. + 2 am řand von Q. => fr + 2 hat 2 k Noustellen mit (* ungerade) => exact & Nullstellen von (1+ 1/2 am Rand von Q, an denen fz positivist

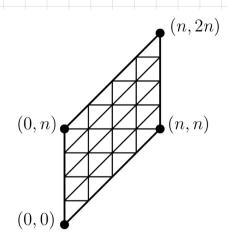


Figure 5: Splitting Q into triangles. Here n=4.

f. hat ganzzahlige Werte an Punten mit ganzzahligen Koordinaten -> f.+ 2 ist nie 0 an Ecken der Dreiecke Nullstellen von f.+ 2 tonnen nur auftroten, wenn f. das Vorzeichen von einem Enapunkt der Kompe Zum anderen Wechselt

Somit: Wenn fr = 2 NST in einem bleinen Dreieck hat

⇒ Deleck besitet en Liniensegment aus NST das die 3 wei NST am Round des Delecks verbindet

=> NUStellen von fit of treten in unverzweigten Pfanden auf, die entweder auf dem Rand von a starten enden oder in Schlaufen Eusammen laufen.

