
Proseminar on computer-assisted mathematics

Session 7 – Introduction to Lean

Judith Ludwig and Florent Schaffhauser

Heidelberg University, Summer semester 2024



Aim for today:

Lean in the wild: Why are mathematicians interested in Lean and
what do they do with it?

Everything is a function: Functions and types in Lean.

Getting started: Play the Natural Number Game (NNG) and install
Lean.



1. What is Lean and why use it?



What is Lean?

Lean is a functional programming language and an interactive theorem
prover / proof assistant.
Lean was created by Leonardo de Moura at Microsoft Research in 2013.
Lean is an open-source development environment for formal mathematics.

The aim: “to revolutionize mathematics by empowering anyone with an
interest to grow in the field using Lean as their assistant”.

https://www.microsoft.com/en-us/research/project/lean/
https://www.microsoft.com/en-us/research/project/lean/


What can you do with Lean?
With Lean you can formalize mathematics.

What does that mean?
Formalizing a mathematical statement means you can write it down
in a format that the computer can understand. Formalizing it in Lean
means, expressing it in Lean code so that Lean can interact with it.
Formalizing a proof of that statement in Lean means, writing down a proof
that Lean can interact with rigorously, i.e., can check for correctness.



Checking means: Everything is checked back to the level of the
foundations. For that Lean implements a particular logic.
This logic is called dependent type theory. More later.

There are other proof assistants. For example Coq (also uses dependent
type theory), HOL Light and Isabelle (simple type theory) or Mizar (set
theory).

What proof assistants are not: They are not computers. Asking Lean to
compute

√
3 is not a sensible thing to do. The number

√
3 is the positive

real number that solves x2 − 3, and it is precisely that number and any
approximation is not

√
3.



Why should you care?



Here are some questions:
How much mathematics does a computer understand?
Think about the most abstract concept you’ve encountered in your studies.
Do you think your computer could understand it, i.e., do you think one
can formalize it?
Could it check your solutions of an Algebra 1 exercise sheet?



Ten years ago, the answer would have almost certainly be: NO.
Today, it might well be that you can check them yourself.
(If you know how to talk to a proof assistant!).

Another motivation:
When formalizing you think about mathematics in a different way. You
might find errors in your work!



Other potential uses:

Searchable libraries of previously formalized maths.

Interactive textbooks, where reader can choose how much detail they
want to see.

Mechanization / automation of mathematics.

Error free mathematics.

AI?



Why do mathematicians care?

We should tell you about the history of formally verified theorms, about
achievements like the four colour theorem, or the proof of the Kepler
conjecture.
For that let us refer you to [2] in the further reading references below.



Let us focus on three (very recent!) success stories of Lean within maths
(there are more).

1. The Liquid Tensor Experiment

In December 2020 Peter Scholze posed a challenge to the formalization
community to formally verify an important new theorem of himself and
Dustin Clausen from the very new theory of condensed mathematics.
This challenge was completed in July 2022.

It shows that modern research can be formalized and in particular verified.



Blueprint for the LTE.



2. Polynomial Freiman-Ruzsa Conjecture

Last year, mathematicians Ben Green, Timothy Gowers, Freddie Manners
and Terence Tao proved an important conjecture in additive combinatorics.
Within a month, a team led by Terence Tao verified the result using Lean.

It shows that formalization can happen fast and quicker than a peer-review
process.

Just as with the Liquid Tensor Experiment, this was a big collaborative
project. Many contributors were able to work on a small part without
necessarily understanding the global proof. This is different from classical
mathematical research!



3. Mathlib4

The Lean mathematical library, mathlib, is a community-driven effort to
build a unified library of mathematics formalized in the Lean proof
assistant.
The project is very active. It has many regular contributors and it grows
every daily.
It already contains a lot of mathematics.

Checkout
https://leanprover-community.github.io/mathlib-overview.html

But there is lots to do.
You could become a contributor!

https://leanprover-community.github.io/mathlib-overview.html


In the last ten years, the formalization of mathematics has grown
immensely as a subject bridging maths and computer science.

Beyond mathematics and computer science, proof assistants are now being
noticed.



https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728

https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/

https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728
https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/


https://www.zeit.de/2024/09/computer-mathematik-beweise-ueberpruefung-vertrauen

https://www.zeit.de/2024/09/computer-mathematik-beweise-ueberpruefung-vertrauen


2. Functions and types in Lean



In contemporary university courses, mathematics is taught in the language
of set theory: sets are the primary objects and everything else is built out
of them.

For instance, a function f : X → Y is (supposed to be) defined as a subset

Γ ⊂ X × Y such that ∀ x ∈ X ,∃!y ∈ Y , (x , y) ∈ Γ.



Similarly, an equivalence relation R on a set X is defined as a subset

R ⊂ X × X

such that:

∀ x ∈ X , (x , x) ∈ R (reflexivity).

∀ x ∈ X , ∀ y ∈ X , (x , y) ∈ R ⇒ (y , x) ∈ R (symmetry).

∀ x ∈ X , ∀ y ∈ X , ∀ z ∈ X , (x , y) ∈ R ∧ (y , z) ∈ R ⇒ (x , z) ∈ R
(transitivity).



Another possible approach is to express mathematics in type-theoretic
language, as opposed to set-theoretic. Type theory dates back to
Bertrand Russell, who developed it to avoid certain paradoxes in set theory.

But more precisely, the basis for this alternate approach to mathematics is
the simply-typed λ-calculus developed by Alonzo Church in the 1930s.
There, the primary notion is the notion of function, and everything else is
defined from that.



Consider for instance the following two approaches to natural numbers:

Von Neumann’s encoding

0 ∅
1 {∅}
2 {∅, {∅}}
3 {∅, {∅, {∅}}}

The successor function is
n 7→ n ∪ {n}.

Church’s encoding

0 f 7→ (x 7→ x)
1 f 7→ (x 7→ f (x))
2 f 7→ (x 7→ f (f (x)))
3 f 7→ (x 7→ f (f (f (x))))

The successor function is
f ◦n 7→ f ◦ f ◦n.

Note that the statement 0 ∈ 1 makes sense in Von Neumann’s encoding!



The reason why the type-theoretic approach is well-adapted to
programming is because of the Curry-Howard correspondence between
propositions and types.

In the interpretation of propositions-as-types, a function f : P → Q
represents an implication between the proposition P and Q. More
precisely, the function f is seen as a proof of the implication P → Q.

The set-theoretic notation P ⇒ Q is usually no longer used in the
type-theoretic approach.



When a proposition P is viewed as a type, a term of type P is a proof of
that proposition. So proving an implication P → Q means defining a
function that sends a proof of P to a proof of Q.

In the type-theoretic approach, a subset P of a type X is a special type of
function, called a predicate:

P : X → Prop.

Here, a proposition is a formal statement (provable or not).

Example:

Of a proposition: “42 is divisible by 2” or “42 is divisible by 3”.

Of a predicate: the function P : N → Prop that sends n : N to the
proposition “n is even”.



Similarly, an equivalence relation R on a type X is defined as a function

R : X → X → Prop

such that:

∀ x : X , the proposition R x x has a proof (reflexivity).

∀ x : X , ∀ y : X , if the proposition R x y has a proof, then the
proposition R y x has a proof (symmetry):

∀ x : X , ∀ y : X ,R x y → R y x

∀ x : X , ∀ y : X , ∀ z : X , if the proposition R x y has a proof and
the proposition R y z has a proof, then the proposition R x z has a
proof (transitivity):

∀ x : X ,∀ y : X ,∀ z : X ,R x y → R y z → R x z

Example: X = N and R m n := (m − n is an even number).



3. Getting started



You can start by choosing an option from the following list:

Play the Natural Number Game.

Practice online with the following intro file.

Install Lean 4 on your computer (see also the install instructions on
the Leanprover-community website).

Check out other resources and references on the next slide.

https://adam.math.hhu.de/#/g/leanprover-community/nng4
https://live.lean-lang.org/#url=https%3A%2F%2Fmatematiflo.github.io%2FSoSe_2024%2Fcode%2F07_intro_to_Lean.lean
https://lean-lang.org/lean4/doc/quickstart.html
https://leanprover-community.github.io/get_started.html


Resources:

https://leanprover-community.github.io/

Online Lean Server: https://live.lean-lang.org/

The ADAM Project: https://adam.math.hhu.de/

Further reading:

(1) Jeremy Avigad, The Mechanization of Mathematics,
http://dx.doi.org/10.1090/noti1688, 2018.

(2) Kevin Buzzard, What is the point of computers? A question for pure
mathematicians, https://arxiv.org/abs/2112.11598, 2022.

(3) Johan Commelin, Liquid Tensor Experiment,
https://www.degruyter.com/document/doi/10.1515/

dmvm-2022-0058/html?lang=en, 2022.

https://leanprover-community.github.io/
https://live.lean-lang.org/
https://adam.math.hhu.de/
http://dx.doi.org/10.1090/noti1688
https://arxiv.org/abs/2112.11598
https://www.degruyter.com/document/doi/10.1515/dmvm-2022-0058/html?lang=en
https://www.degruyter.com/document/doi/10.1515/dmvm-2022-0058/html?lang=en

	Lean in the wild
	Functions and types in Lean

