Proseminar on computer-assisted makhemakics
Session 3 - Kernels, images, eigenvalues and diagonalisation in Sagemath

\# Example 1
A = matrix(QQ, $[[2,0,4],[3,-4,12],[1,-2,5]])$
f_A $=$ A.charpoly("t")
show (f_A $)$
$t^{3}-3 t^{2}+2 t$
\# We can factorise f _A
show(f_A.factor() $)$
$(t-2) \cdot(t-1) \cdot t$
\# And its roots are indeed the eigenvalues of A
ev_A $=$ A.eigenvalues()
show(ev_A)
$[2,1,0]$

Judith Ludwig and Florent schaffhauser Heidelberg Universily, Summer semester 2024

Here are some linear algebra problems that we want to solve computationally using Sagemath:

- Parameterise the set of solutions of a nonhomogeneous linear system $A X=Y$ (which is an affine space).
- Extrack, from a family of vectors, a basis of the subspace that they generate.
- Complete a basis of a subspace to a basis of the ambient space.
- Determine whether a given malrix is diagonalisable and, if so, construct a basis of eigenvectors and the associated eigenvalues.

1. Kernels and images

Recall that the set of solutions of a linear system $A X=Y$ is an affine space of dimension ker A.

Eg: $A=(-12), y=4$ $x_{0}=\binom{0}{2}$ is solution
her $A=\operatorname{span}_{\mathbb{R}}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$

Key observation for proof:
X_{0}, X_{1} two solutions

$$
\Rightarrow A\left(X-X_{0}\right)=Y-Y=0
$$

so $X-X_{0} \in$ ken, A.

So, bo solve $A X=Y$, we need to find one particular solution of chat equation, as well as the general solution of the equation $A X=0$.

Example:

$$
\underbrace{\left(\begin{array}{cccc}
1 & 1 & -1 & 5 \\
0 & -1 & 3 & 0
\end{array}\right)}_{\mathbf{A}}\left(\begin{array}{c}
x \\
y \\
z \\
t
\end{array}\right)=\binom{2}{-1}
$$

Both can be obtained from the Gaussian reduction of the augmented matrix (A|Y).

```
\(y=\operatorname{vector}(\mathrm{QQ},[2,-1])\)
\(M=A\).augment ( \(y\), subdivide \(=\) True )
show ( M )
```

$$
\left(\begin{array}{rrrr|r}
1 & 1 & -1 & 5 & 2 \\
0 & -1 & 3 & 0 & -1
\end{array}\right)
$$

show(M.echelon_form())

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 2 & 5 & 1 \\
0 & 1 & -3 & 0 & 1
\end{array}\right)
$$

The Gaussian reduction can also be used co:

- Find a basis of the column space of a matrix.
- Find Linear dependence relations between the columns of a matrix.
- Complete a family of linearly independent vectors to a basis of the ambient space.
\# Let us retake the previous matrix A show (A)

$$
\left(\begin{array}{rrrr}
1 & 1 & -1 & 5 \\
0 & -1 & 3 & 0
\end{array}\right)
$$

\# The rank of A is equal to the number of the number of pivots in A1 show (A1)

$$
\left(\begin{array}{rrrr}
1 & 0 & 2 & 5 \\
0 & 1 & -3 & 0
\end{array}\right)
$$

These are the pivots. The rank of A is 2 .

2. Diagonalisation

Recall that an eigenvalue of a matrix $A \in \operatorname{Mat}(n \times n, \mathbb{k})$ is an element $a \in \mathbb{k}$ such that there exists a non-
zero column vector ${\underset{\mid}{\text { eigenvector }}}_{X \text { with }} A X=a X$.
Definition. Let \mathbb{k} be a field and let $n>0$ be an integer. A matrix $A \in \operatorname{Mat}(n \times n ; \mathbb{k})$ is called diagonalisable over \mathbb{k} if there exists a pair of matrices (D, P) in $\operatorname{Mat}(n \times n ; \mathbb{k})$ such that:

1. D is diagonal.
2. P is invertible.
3. $A P=P D$.

The last equality means that, for all $j \in\{1 ; \ldots ; n\}$, the j-th column of P is an eigenvector for A, associated to the j-th diagonal coefficient d_{j} of D :

$$
\forall j \in\{1 ; \ldots ; n\}, A C_{j}(P)=d_{j} C_{j}(P)
$$

where

$$
D=\left(\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right)
$$

and $P=\left[C_{1}(P), \ldots, C_{n}(P)\right]$.

Theorem A matrix $A \in \operatorname{Mat}(n \times n ; \mathbb{k})$ is diagonalisable over \mathbb{k} if and only if its characteristic polynomial

$$
f_{A}(t):=\operatorname{det}\left(t I_{n}-A\right)
$$

splits into a product of linear factors

$$
f_{A}(t)=\left(t-a_{1}\right)^{m_{1}} \ldots\left(t-a_{r}\right)^{m_{r}}, a_{j} \in \mathbb{k}
$$

and

$$
\forall j \in\{1 ; \ldots ; r\}, \operatorname{dim} \operatorname{ker}\left(A-a_{j} I_{n}\right)=m_{j}
$$

In other words, A is diagonalisable over \mathbb{k} if and only if its characteristic polynomial $f_{A}(t)$ splits over \mathbb{k} and the geometric multiplicity of of a_{j} as an eigenvalue of A is equal to its algebraic multiplicity as a root of $f_{A}(t)$.

We will now see how to apply this theorem using Sage. Note that sometimes the characteristic polynomial of A is defined as $\operatorname{det}\left(A-t I_{n}\right)$, which is equal to $(-1)^{n} \times f_{A}(t)$ with $f_{A}(t)$ as above. We have chosen to follow Sage's convention here.

```
# Example 2, with multiple eigenvalues
A = matrix(QQ, [[2,-3,1],[1,-2,1], [1,-3,2]])
f_A = A.charpoly("t")
show( f_A.factor() )
t\cdot(t-1)}\mp@subsup{}{}{2
# Sage can show us the eigenvalues of A, counted with their respective mutiplicities
show( A.eigenvalues() )
[0,1,1]
# Similarly, it can show us eigenvectors for A
show( A.eigenvectors_right() )
\([(0,[(1,1,1)], 1),(1,[(1,0,-1),(0,1,3)], 2)]\)
```

D, P = A.eigenmatrix_right()
show(D, P)

```
\(\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{rrr}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 3\end{array}\right)\)

Check: \(A P=P D\)```

