Session 3 - Kernels, images, eigenvalues and diagonalisation in Sagemath # matrix(00, [[2,0,4],[3,-4,12],[1,-2,5]]) T.A = A.charpoly("t") show(f, A.factor()) t ³ - 3t ² + 2t # We can factorise f.A show(f.A.factor()) (t-2) · (t-1) · t # And its roots are indeed the eigenvalues of A evA = A. eigenvalues() show(evA) [2,1,0] Judith Ludwig and Florent Schaffhauser Heidelberg University, Summer semester 2024	Pro	oseminar c	on computer-assiste	ed mathematics
A = matrix(00, [[2,0,4], [3,-4,12], [1,-2,5]]) $f_A = A. charpoly("")$ show(f_A) $t^3 - 3t^2 + 2t$ # We can factorise f_A show($f_A. factor()$) $(t-2) \cdot (t-1) \cdot t$ # And its roots are indeed the eigenvalues of A $ev_A = A. eigenvalues()$ show(ev_A) [2,1,0] 2.1,0] 2.1,0] 2.1,0] 2.1,0] 2.1,0] 2.1,0]	· ·	Session 3 - dia	Kernels, images, eige gonalisation in Sagen	nvalues and nath
# We can factorise f_A show(f_A.factor()) (t-2)·(t-1)·t # And its roots are indeed the eigenvalues of A ev_A = A.eigenvalues() show(ev_A) [2,1,0] Judith Ludwig and Florent Schaffhauser Heidelberg University, Summer semester 2024	 	· · · · · · · · · · ·	A = matrix(QQ, [[2,0,4],[3,-4,12],[1,-2,5]]) f_A = A.charpoly("t")	
(t-2)·(t-1)·t # And its roots are indeed the eigenvalues of A ev_A = A.eigenvalues() show(ev_A) [2,1,0] Judith Ludwig and Florent Schaffhauser Heidelberg University, Summer semester 2024	 	· · · · · · · · · ·	# We can factorise f_A	
Judith Ludwig and Florent Schaffhauser Heidelberg University, Summer semester 2024	 		$(t-2)\cdot(t-1)\cdot t$ # And its roots are indeed the eigenvalues of A ev_A = A.eigenvalues()	· ·
Heidelberg University, Summer semester 2024	· · · · · · · ·	· · · · · · · · · ·		
	. .			

Parameterise the set of solutions of a non- homogeneous linear system $AX = Y$ (which is an affine space).
Extract, from a family of vectors, a basis of the subspace that they generate.
Complete a basis of a subspace to a basis of the ambient space.
Determine whether a given matrix is diagonalisable and, if so, construct a basis o eigenvectors and the associated eigenvalues.

Recall that the set of solutions of a linear system AX = Y is an affine	Eq: $A = (-1 \ 2)$, $Y = 4$ $X_0 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ is solution
space of dimension ker A.	ker $A = \operatorname{span}_{\mathbb{R}}\left(\begin{bmatrix} 2\\ 1 \end{bmatrix} \right)$
Key observation for proof:	
X_0, X_1 two solutions => $A(X - X_0) = Y - Y = 0$	$\begin{array}{c} X_{0} \\ H \\ -6 \\ -4 \\ -2 \\ 2 \\ 4 \\ 6 \end{array}$
so X-X, ∈ kerA.	-2 -2

So, to solve $AX = Y$, we nee particular solution of that the general solution of th		•			ll a 0.		· · ·
Example: $\begin{pmatrix} 1 & 1 & -1 & 5 \\ 0 & -1 & 3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$	$=\begin{pmatrix} 2\\ -1 \end{pmatrix}$		· · ·	· · ·	· · ·	· ·	· ·
$(0 -1 3 0) (z \\ t)$	$\int \int \int \nabla$				· · ·	• •	• •
						• •	
			• • •				
				•			
	😰 🦉						
Both can be obtained from	n the	Gau	ssia	N		0 0	• •
Both can be obtained from reduction of the augments	n the ed m	Gau atrix	ssia (A	n 175.	· · ·	• •	
Both can be obtained from reduction of the augmente	n the ed m	Gau atrix	.55LA (A	17).	· · · ·	· ·	· ·
Both can be obtained from reduction of the augmente	n the ed m	Gau atrix	SSLA	n 17).	· · · ·	· ·	· · ·
reduction of the augmente	n the ed m	Gau	SSLA	n 17).		· · ·	· · ·
<pre>y = vector(QQ, [2, -1]) M = A.augment(y, subdivide = True)</pre>	n the ed m	Gau	SSLA	n 17).		· · · · · · · · · · · · · · · · · · ·	· · ·
y = vector(QQ, [2, -1])	n the ed m	Gau atrix				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
<pre>y = vector(QQ, [2, -1]) M = A.augment(y, subdivide = True) show(M)</pre>	n the ed m	Grau atrix				· · · · · · · · · · · · · · · · · · · ·	 . .<
<pre>y = vector(QQ, [2, -1]) M = A.augment(y, subdivide = True) show(M)</pre>	n the ed m	Gau atrix				· · · · ·	 . .<
<pre>y = vector(QQ, [2, -1]) M = A.augment(y, subdivide = True)</pre>	n the ed m	Grau atrix					 . .<
reduction of the augments $y = vector(QQ, [2, -1])$ $M = A.augment(y, subdivide = True)$ $show(M)$ $\begin{pmatrix} 1 & 1 & -1 & 5 & 2 \\ 0 & -1 & 3 & 0 & -1 \end{pmatrix}$	n the month of the	Crau atrix					 . .<
reduction of the augments $y = vector(QQ, [2, -1])$ $M = A.augment(y, subdivide = True)$ $show(M)$ $\begin{pmatrix} 1 & 1 & -1 & 5 & 2 \\ 0 & -1 & 3 & 0 & -1 \end{pmatrix}$	n the month of the sed month of the sed month of the second secon						 . .<
reduction of the augments $y = vector(QQ, [2, -1])$ $M = A.augment(y, subdivide = True)$ $show(M)$ $\begin{pmatrix} 1 & 1 & -1 & 5 & 2 \\ 0 & -1 & 3 & 0 & -1 \end{pmatrix}$	n the month of the					 . .<	 . .<
reduction of the augments $y = vector(QQ, [2, -1])$ $M = A.augment(y, subdivide = True)$ $show(M)$ $\begin{pmatrix} 1 & 1 & -1 & 5 & 2 \\ 0 & -1 & 3 & 0 & -1 \end{pmatrix}$	n the month of the					<

The Gaussian reduc	tion can a	Lso	5 1	be		LSC	20	£	to		• •			· ·	•	•	· ·	•
• Find a basis matrix.	s of the co	Lu		N	S	oa	C	2	0	F	a		•	• •	•	•	• •	•
• Find linear a columns of a	dependenc a matrix.	e	re	La	Ŀi	ov	۱S)el	tu)e(е н 		Shi	2	•	· · ·	•
• Complete a f vectors to a	family of L basis of th	in e	eo	rl nt	y	iv en	ic E	le sr	pe	en Ce	d.	ev	r	· ·	•		· ·	•
<pre># Let us retake the previous matrix A show(A)</pre>		•	· ·	•	••••	•	•	· ·	• •	•	• •		•	••••	•	•	••••	•
$egin{pmatrix} 1 & 1 & -1 & 5 \ 0 & -1 & 3 & 0 \end{pmatrix}$	· · · · · · · · · ·	•	· ·	•	• •	•	•	• •	• •	•	• •	• •	•	••••	•	•	••••	
<pre># The rank of A is equal to the number of the A1 = A.echelon_form() show(A1)</pre>	number of pivots in Al	•	· ·	•	••••	•	•	• •	• •	•	• •	• •	•	• •	•	•	• •	
$\begin{pmatrix} 1 & 0 & 2 & 5 \\ 0 & 1 & -3 & 0 \end{pmatrix}$			· ·	•	• •	•	•	• •	• •	•	• •	• •	•	•••	•	•	• •	
		•	• •		• •	•	٠	• •			• •		٠	• •		٠		•

2. Diagonalisation	
Recall that an eigenvalue of a matrix $A \in Mat(n \times n, k)$	· ·
is an element a E k such that there exists a non-field	· ·
zero column vector χ with $A\chi = \alpha \chi$.	· ·
eigenvector	••••
Definition. Let \Bbbk be a field and let $n > 0$ be an integer. A matrix $A \in Mat(n \times n; \Bbbk)$ is called diagonalisable over \Bbbk if there exists a pair of matrices (D, P) in $Mat(n \times n; \Bbbk)$ such to 1. D is diagonal. 2. P is invertible.	hat:

3. AP = PD.

The last equality means that, for all $j \in \{1; ...; n\}$, the *j*-th column of *P* is an eigenvector for *A*, associated to the *j*-th diagonal coefficient d_j of *D*:

 $orall \, j \in \{1;\ldots;n\}, AC_j(P) = d_jC_j(P)$

where

 $D=egin{pmatrix} d_1&&&\ &\ddots&\ &&d_n\end{pmatrix}$

and $P = [C_1(P), \ldots, C_n(P)].$

Theorem A matrix $A\in \mathrm{Mat}(n imes n;\Bbbk)$ is diagonalisable over \Bbbk if and only if its characteristic polynomial

 $f_A(t) := \det(tI_n - A)$

splits into a product of linear factors

 $f_A(t)=(t-a_1)^{m_1}\dots(t-a_r)^{m_r},\ a_j\in \Bbbk$

and

$$\forall j \in \{1; \ldots; r\}, \ \dim \ker(A - a_j I_n) = m_j$$

In other words, A is diagonalisable over \Bbbk if and only if its characteristic polynomial $f_A(t)$ splits over \Bbbk and the geometric multiplicity of of a_j as an eigenvalue of A is equal to its algebraic multiplicity as a root of $f_A(t)$.

We will now see how to apply this theorem using Sage. Note that sometimes the characteristic polynomial of A is defined as $det(A - tI_n)$, which is equal to $(-1)^n \times f_A(t)$ with $f_A(t)$ as above. We have chosen to follow Sage's convention here.

<pre># Example 2, with multiple eigenvalues A = matrix(QQ, [[2,-3,1],[1,-2,1],[1,-3,2]]) f_A = A.charpoly("t") show(f_A.factor())</pre>	<pre>D, P = A.eigenmatrix_right() show(D, P)</pre>
$t\cdot (t-1)^2$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$
<pre># Sage can show us the eigenvalues of A, counted with their respective mutiplicities show(A.eigenvalues())</pre>	$\left(\begin{array}{ccc} 0 & 1 & 0 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 1 \end{array}\right)$
[0,1,1]	$egin{array}{cccccccccccccccccccccccccccccccccccc$
<pre># Similarly, it can show us eigenvectors for A show(A.eigenvectors_right())</pre>	· · · · · · · · · · · · · · · · · · ·
$\begin{bmatrix} (0, [(1, 1, 1)], 1), (1, [(1, 0, -1), (0, 1, 3)], 2) \end{bmatrix}$	Check: AP=PD
the the	
the a basis for the (algebraic)	
eigen- corresponding multiplicity	
value eigenspace	