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Here are some linear algebra problems that we want to 
solve computationally using Sagemath:

• Parameterise the set of solutions of a non-
homogeneous linear system AX = Y (which is 
an affine space). 

• Extract, from a family of vectors, a basis of 
the subspace that they generate.

• Complete a basis of a subspace to a basis of 
the ambient space.

• Determine whether a given matrix is 
diagonalisable and, if so, construct a basis of 
eigenvectors and the associated eigenvalues.



1. Kernels and images

Recall that the set of 
solutions of a linear 
system AX = Y is an affine 
space of dimension ker A.
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So, to solve AX = Y, we need to find one 
particular solution of that equation, as well as 
the general solution of the equation AX = O.

Both can be obtained from the Gaussian 
reduction of the augmented matrix  (A|Y).

Example:

* XY



• Find  a basis of the column space of a 
matrix.

• Find linear dependence relations between the 
columns of a matrix.

• Complete a family of linearly independent 
vectors to a basis of the ambient space. 

The Gaussian reduction can also be used to:

These are the pivots. The rank of A is 2.
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2. Diagonalisation

Recall that an eigenvalue of a matrix
 
is an element          Such that there exists a non-

zero column vector     with   
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