Proseminar on computer-assisted mathematics

Session 10 - The fundamental theorem of algebra

Theorem 1. Any nonconstant polynomial with complex coefficients has a complex root. We will prove this theorem by reformulating it in terms of eigenvectors of linear operators. Let

 $f(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$

have degree $n \ge 1$, with $a_j \in \mathbf{C}$. By induction on n, the matrix

 $A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$

satisfies $det(\lambda I_n - A) = f(\lambda)$. Therefore Theorem 1 is a consequence of

Theorem 2. For each $n \ge 1$, every $n \times n$ square matrix over **C** has an eigenvector. Equivalently, for each $n \ge 1$, every linear operator on an n-dimensional complex vector space has an eigenvector.

· · · · · · · · · · ·	Florent Sc	haffhaus	er	· · · ·	•	•
Heidelberg	University,	Summer	semester	2023	•	•

A non-constant polynomial with complex coefficients has a complex root. A proof of this using concepts from linear algebra can be found here: ps://kconrad.math.uconn.edu/blurbs/fundthmalg/fundthmalglinear.ps The goal of this project is to formalize fragments from the above paper and prove them (this can be split between several teams).	h	e fundamental theorem of algebra
A proof of this using concepts from linear algebra can be found here: ps://kconrad.math.uconn.edu/blurbs/fundthmalg/fundthmalglinear.ps The goal of this project is to formalize fragments from the above paper and prove them (this can be split between several teams).	•	A non-constant polynomial with complex coefficients has a complex root.
ps://kconrad.math.uconn.edu/blurbs/fundthmalg/fundthmalglinear.pd The goal of this project is to formalize fragments from the above paper and prove them (this can be split between several teams).	•	A proof of this using concepts from linear algebra can be found here:
The goal of this project is to formalize fragments from the above paper and prove them (this can be split between several teams).	P	s://kconrad.math.uconn.edu/blurbs/fundthmalg/fundthmalglinear.pd
	•	The goal of this project is to formalize fragments from the above paper and prove them (this can be split between several teams).

Lemma 3	Task 1
Let F be a Field.	(F: Type) [hF: Field F]
Let V be a finite- dimensional F-module.	(V: Type) [hV: module F V]
Let $d := \dim V$ and $m \ge 1$ be an integer.	(m:Z) (hm:m>0)
Assume that $n \not d = \sum \forall A : V \rightarrow V \text{ linear},$ $\exists \lambda \in F, \exists v \in V \setminus [0],$ $A \cdot v = \lambda V$	$(H: m) (A \rightarrow (A: V \rightarrow V))$ $n (A \ linear)$ $\rightarrow 3(A: F), 3(v:V)$
(*) $\begin{cases} \forall A_1, A_2 : V \rightarrow V \text{ linear}, \\ (A_2, A_2 = A_2, A_1) \rightarrow \exists \lambda_1, \lambda_2, CF, \exists v \in V \psi \\ A_1 v = \lambda_1 v \text{ and } A_2 v = \lambda_1 v. \end{cases}$	We define a function sending F, V, m, hm and H to a proof of the statement (*)

Remarks on the proof of Lemma 3		
You wi definil	ill need to use mathlib for the tion of a field and a vector space.	Task 2
The pr	oof is by strong induction on d.	Task 3
If thin prove mathli Theore	igs go well, you might be able to the following Corollary (using b again for the Intermediate Value m).	Task 4
· · · · · · · · · ·	Corollary 4. For every real vector space V whose dimension is odd, any pair of commuting linear operators on V has a common eigenvector.	· · · · · · · · ·
. .	<i>Proof.</i> In Lemma 3, use $F = \mathbf{R}$ and $m = 2$. Any linear operator on an odd-dimensional real vector space has an eigenvector since the characteristic polynomial has odd degree and therefore has a real root, which is a real eigenvalue. Any real eigenvalue leads to a real eigenvector.	. .
· · · · · · · · · ·	. .	

Proof	of the main theorem is odd
	$rite d = 2^k n \qquad where \qquad 2 K n.$
· · · · · · · · · · ·	hen the result is proved by
· · · · · · · · · · · · · · · · · · ·	trong induction on k.
	the k = 0 case is already interesting and hould be treated as a separate lemma.
	> can you for malise its statement?
10.51 4	> can you prove it?
. .	Note that this uses Corollary 4!