Proseminar on compuler-assisked mathematics

Session 10 - The fundamental theorem of algebra

Theorem 1. Any nonconstant polynomial with complex coefficients has a complex root.
We will prove this theorem by reformulating it in terms of eigenvectors of linear operators.
Let

$$
f(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

have degree $n \geq 1$, with $a_{j} \in \mathbf{C}$. By induction on n, the matrix

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -a_{n-2} \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

satisfies $\operatorname{det}\left(\lambda I_{n}-A\right)=f(\lambda)$. Therefore Theorem 1 is a consequence of
Theorem 2. For each $n \geq 1$, every $n \times n$ square matrix over \mathbf{C} has an eigenvector. Equivalently, for each $n \geq 1$, every linear operator on an n-dimensional complex vector space has an eigenvector.

Florent schaffhauser
Heidelberg University, Summer semester 2023

The fundamental theorem of algebra

A non-constank polynomial with complex coefficients has a complex rook.

A proof of this using concepts from linear algebra can be found here:
hetps//Kconradmathiconnedu/burbs/fundthmalg/fundthmalglinearydf
The goal of this project is to formalize fragments from the above paper and prove them (this can be split between several teams).

Lemma 3
Let F be a Field.
Let V be a finite dimensional F-module:

Let $d:=\operatorname{dim} V$
and $m \geqslant 1$ be an integer.
Assume that

$$
\begin{aligned}
m X d \Rightarrow & \forall A: V \rightarrow V \text { linear, } \\
& F \lambda \in F, \exists v \in V|O|, \\
& A \vee=\lambda V
\end{aligned}
$$

Then:
(*) $\left\{\begin{array}{r}\forall A_{1}, A_{2}, V \rightarrow V \text { linear, } \\ \left(A_{1} A_{2}=A_{2} A_{1}\right) \Rightarrow \exists \lambda_{1}, \lambda_{2} \in F, \exists v \in V_{1+1} \\ A_{1} v=\lambda_{2} v \operatorname{ard} A_{2} v=\lambda_{2} r .\end{array}\right.$
$\left(F: T_{\text {ye }}\right)[h F:$ Field $F]$
$(V:$ Type $)[h V: \operatorname{module} F V]$
$(m: \mathbb{Z}) \quad($ hm $: m>0)$

$$
\begin{aligned}
(H: m X d & \rightarrow(A: V \rightarrow V) \\
& \rightarrow f(A: F), f(V \vee V), \\
& (V \neq 0) \cap(A \vee=V) .)
\end{aligned}
$$

we define a function sending F, V, m, $h m$ and H to a proof of the statement $(*)$

Remarks on the proof of Lemma 3

You will need to use malhlib for the definition of a field and a vector space.

The proof is by strong induction on d.
Task 2

If things go well, you might be able lo prove the following corollary (using mathlib again for the Intermediate Value Theorem).

Corollary 4. For every real vector space V whose dimension is odd, any pair of commuting linear operators on V has a common eigenvector.
Proof. In Lemma 3, use $F=\mathbf{R}$ and $m=2$. Any linear operator on an odd-dimensional real vector space has an eigenvector since the characteristic polynomial has odd degree and therefore has a real root, which is a real eigenvalue. Any real eigenvalue leads to a real eigenvector.

Proof of the main theorem
Write $d=2^{k} n \quad$ where $\quad 2 X n$.
Then the result is proved by strong induction on L.
$\leftrightarrow d$ is odd
The $k=0$ case is already interesting and should be treated as a separate lemma.
Task $4 \mid \ldots$ can you formalise it
Note that this uses Corollary 4 !

