Proseminar o :mmm&eraassasi&ed mabhemakics

Session 10 - The fundamental theorem of algebra

Theorem 1. Any nonconstant polynomial with complex coefficients has a complex root.
We will prove this theorem by reformulating it in terms of eigenvectors of linear operators.
Let
f2)=2"+an_12" 1+ + a1z + ag
have degree n > 1, with a; € C. By induction on n, the matrix

(o 00 -+ 0 =—ap
0O0 --- 0
10 -+ 0 —ap
A= o .
000 -+ 0 —ans
\0 00 -+ 1 —an1)

satisfies det(A,, — A) = f()). Therefore Theorem 1 is a consequence of

Theorem 2. For each n > 1, every n X n square matriz over C has an eigenvector.
Equivalently, for each n > 1, every linear operator on an n-dimensional complex vector |
space has an eigenvector.

%«Loram& Sckaﬁhauser
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Remarks on the proof of Lemma 3

You will need bto use mwakhlib »fc;:-r the Tosk 2
definition of a field and a vector space.

The proc:-{: LS bv skrong induction on d, Task 3

If things qo well, you might be able to
prove the following Corollary (using
mathlib again for the Intermediate Value
Theorem).

Tosk 4

Corollary 4. For every real vector space V whose dimension is odd, any pair of commuting
linear operators on V has a common eigenvector.

Proof. In Lemma 3, use F' = R and m = 2. Any linear operator on an odd-dimensional
real vector space has an eigenvector since the characteristic polynomial has odd degree and
therefore has a real root, which is a real eigenvalue. Any real eigenvalue leads to a real
eigenvector. O
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