Proseminar o &ompu&armassbsﬁad mabhemakics

Session 7 - Inkroduction to Lean

THEOREM PROVER

Florent Schaffhauser
Heidelberg University, Summer semester 2023

 We will be using Lean 3. The best place to get
 skarted is the Léahﬁéamm:u&\;i&j webstbe:
B \ O ps/leanprover—
R VI N communitygithubios
-~ Communiy
~ Inporticular the pipsi//leanprover-
......... tnstallakiom QQMMMML& _ ‘fjb&h%b&@/

............ ¥ Lean is ready!

............ ‘ B Load .lean from URL: Load e e e e e e e
,,,,,,,,,,,, \V/N Load .lean from disk: Choose File no file selected
Save

2 Live in-browser version of the Lean theorem prover.

............ 1 5:5: goal E

____________ 2 /- *xxModus ponensxxx —/
3 P Q : Prop

----------- 4 def MP {P Q : Prop} : P A (P~0Q) » Q := FPA(P-Q ~Q o

............ 5 begin| I o
6 intro h,

"""""" 7 cases h with hP hPQ, : : . : : : : . . :

............ 8 apply hPQ,
9 exact hP,

............ 10 end

| For us, the most convenient OF’?EE,OV\ Eadogj will be
e MF’LC?O!C{} our Lean file to CoCalc: S

- @ Input 0v - + < Input V = n e X @ Infoat Cursor [Vv - + @ Info v = [%A X
Ml [Talk1.lean Tactic State

. . ¥ .
1 20 Prop, What is showin here will
2 /- #*Modus ponens* -/ hP & : :
3 : ’
4 def MP {P Q : Prop} (hP : P) (hPQ : P » Q) : Q := hPQ : P - Q dﬁ‘.P?_V\d @]\ Where H‘\G‘.
2 begj.nl hPQ " e H ' H
a
¢ | o e cursor is i the file,
’
8 end
9
10 (@ #check eMP
11 ® Help at Cursor [Vv - + ® Help Vv g | M| 3 X
12 /- MP appears as a function that, given propositions P and Q,
sends a proof of the propositions P and (P = Q) to a proof of Q
1l
14 MP : V {P Q : Prop}, P~ (P = Q) » Q
15 -/
16
17, variables {P Q : Prop} (hP : P) (hPQ : P - Q)
18
19 /- A proof that, in our context, the Proposition Q is true: we
simply apply the *modus ponens* function defined above to the
. proofs of the propositions P and (P = Q) -/ ® AllMessages [) VvV = 4+ . ® Mesages V = 3 e X
" et def In_our_context_Q is true : Q := MP hP hPQ
22
" 23 @ #check @MP P O hP hPQ (10:0 information check result
. 24 () #check MP hP hPQ MP : V {P Q : Prop}, P~ (P = Q) » Q
25

-
'ﬁﬁﬁﬁ.'mﬁ[;ﬁﬁ:ﬁ.Lﬁﬁﬁ:ﬁﬁﬁﬁmﬁﬁd\ﬁﬁhfﬁiﬁmdﬁm&hﬁﬁ..
~ Thelean file object called MP, defined.
S between Lines 4 and ¥,

Now we praa&ice!

The first practice file is the Introduction ko Lean file,
available from the seminar webpage.

weekl.lean Lean/week1.lean/...)

/- # *xIntroduction to Leankx

*kAuthor:*xx Florent Schaffhauser, Uni-Heidelberg, Summer Semester 2023

*xxLean is a programming languagexk that can be used as a *proof assistantx (alsc

This means that Lean can be used to check and certify the correctness of certai

It was created and first implemented by *xLeonardo de Mouraxk at Microsoft Rese:

The current version is Lean 4, dating back to 2021. It is not backwards-compati
/- ## Types and terms -/

/- In Lean, we have access to certain data types, which are part of the language
The command ‘#check' tells us the type of an expression, for instance ‘char' fo
If “#check t' returns 'T', one says that *x't’ is a term of type 'T k. This is

#check 'H' 'H' : char

#check 32 42 :

"Hello, world!" : string

Lean Infoview

v week1.lean:9:0 = O 6
No info found.
» All Messages (35) I

Preview week1.md
Introduction to Lean

Author: Florent Schaffhauser, Uni-Heidelberg, Summer Semester 2023

Lean is a programming language that can be used as a proof assistant (also called an
interactive theorem prover).

This means that Lean can be used to check and certify the correctness of certain computer
programmes and formalised mathematical proofs.

It was created and first implemented by Leonardo de Moura at Microsoft Research, where
the first version was launched in 2013.

The current version is Lean 4, dating back to 2021. It is not backwards-compatible wih Lean
3, which is the version that we use for the purposes of this seminar.

Types and terms

In Lean, we have access to certain data types, which are part of the language.

The command #check tells us the type of an expression, for instance char for a character,
string for a string of characters, and N (also called nat) for an integer. This last one will turn
out to be of a different "nature" than the first two.

If #check t returns T, one says that t is a term of type T. This is abbreviatedto t : T.

#check 'H'
#check "Hello, world!"
#check 42

#check "Hello, ".append("world!")
#check 41 + 1

The data types string and N are themselves terms of type Type. You can obtain the symbol
N by typing \nat or \N followed by the space bar. You can also just use nat instead of N.

#check string
#check N
#check nat

Not all data types are terms of type Type. Some are more complex than that, for instance the
type list.

0w the GitHub repository of the seminar, you can find that file
 uhder the name weekllean, along with its markdown version,

[0 ¥ 2023_Sose ~ Comp_assisted_math/Lean/ (& Q Go tofile t Add file ~

@ matematiflo Practice folder created e77acef - 10 minutes ago 1) History
Name Last commit message Last commit date
[[

P Practice_folder Practice folder created 10 minutes ago
[README.md Update README.md 1 hour ago
Y weekl.lean Updated week1 files 3 hours ago
[weekl.md Updated week1 files 3 hours ago
README.md 7

Formal proofs in Lean 3

Author: Florent Schaffhauser, Uni-Heidelberg, Summer Semester 2023

This is the GitHub repository for the Introduction to Lean part of the (Pro)Seminar on computer-assisted mathematics, held at the
University of Heidelberg in the Summer Semester of 2023.

Below you will find the programme of the seminar. For each week, there is a corresponding .lean file, which you can use to practice. You
can also view a markdown version of the weekly files by clicking on the corresponding .md files.

I have also put the modus ponens
~ file in the Practice folder.

