· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Proseminar on computer-assisted	1 mathematics
Session 5 - Least squares appr	oximation
· · · · · · · · · · · · · · · · · · ·	
	,
40	
30	
20	
	for a second second second second second second
Florent Schaffhauser	
Heidelberg University, Summer ser	nester 2023

What	we want to be able to do:
	Perform data analysis using linear regression.
	Starting from a data set, find a good approximation model and use that model to:
	1. Describe and analyse the data.
	2. Make some predictions for the future.
	· · · · · · · · · · · · · · · · · · ·

	· · · · · · · · · · · · · · · · · · ·		
	(data) (25), (2, 15), (3, 9), (4, 24), (5, 37), (6, 50), (7, 51)]	We start from a data set.	
		· · · · · · · · · · · · · · · · · · ·	
80 - 70 - 60 -		We look at the associated scatter plot in the plane.	
50 - 40 - 30 -	• • • • •		
20	•	We try to approximate the scatter plot by a line or a parabola, or whatever model we need relevant.	
-	1 2 3 4 5 6 7 8	· · · · · · · · · · · · · · · · · · ·	
++ + + -			

The mathematical	formulation	
Choose for ins this means that scatter plot by	tance y = ax + t we try to app an affine line	- b as a model: proximate the
	y = ax + b	We want to minimise the quantity
40 40 		$d_n^2 + d_n^2 + - \cdot \cdot + d_n^2.$
$A_{i} = Y_{i}$	- (ax;+b)	Least squates
		approximation "
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·

We solve the problem us	ing linear algebra.
$Y = \begin{pmatrix} 5_1 \\ \vdots \\ 5_n \end{pmatrix}$	$= \begin{pmatrix} n_1 & 1 \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}$
nin (a, l) E IR Pythogorean theorem !	$(T_{n}A)^{2}$
$\ Y - 2\ ^{2} \stackrel{T}{=} \ Y - 23\ ^{2} + \ 2 - 23\ ^{2}$ $\ Y - 20\ ^{2}$ with equality if and only if $2 = 20$.	$\frac{1}{2} + \frac{1}{2} + \frac{1}$

Explicit formulas	· · · · ·	. .
Projection matrix:	· · · · ·	· · · · · · · ·
IF A has full rark, then P = A (A ^t A)	- At
is the projection mattix.	· · · · ·	· · · · · · · ·
Solution of the least squares problem:	· · · · ·	
IF A has Full rank, then		
IIY - AXIL' is mininal		
zFF $X = (A^{T}A)^{-1}A^{T}Y$	· · · · ·	· · · · · · · ·
(so indeed AX = PY).	· · · · ·	· · · · · · · ·
	· · · · ·	

A proof of the formula for the projection matrix ZEIMA :FF Z= PINA (Y) (Y-2) (Im A) $\left\{ \begin{array}{l} z = A \\ (X - A \\ (Y - A \\) \end{array} \right\} \in K \\ \left\{ \begin{array}{l} exercise \\ (they are equal \\ f = equal \\ (the subspace) \end{array} \right\}$ - 22 $A^{t}(Y - AX) = 0$ exercise! (in restible if A hos full rank L - C . $A^{t}\gamma = A^{t}(A \times) = (A^{t}A) \times$ i. . . $\chi = (A^{t}A)^{-1}A^{t}\gamma$ i.e. $z = A X = A (A^{t} A)^{-1} A^{t} Y.$ i e