Proseminar on computer-assisted mathemakics
Session 4 - Kernels, images and diagonalisation in Sagemath

```# Example 1 A = matrix(QQ, [[2,0,4], [3,-4,12], [1,-2,5]]) f_A = A.charpoly("t") show( f_A )```
$t^{3}-3 t^{2}+2 t$
\# We can factorise $f$ _ $A$ show( f_A.factor() )
$(t-2) \cdot(t-1) \cdot t$
\# And its roots are indeed the eigenvalues of A ev_A = A.eigenvalues() show( ev_A )
[2, 1, 0]

Florent schaffhauser
Heidelberg Universily, Summer semester 2023

What we want to be able to do:

- Parameterise the set of solutions of a nonhomogeneous linear system $A X=Y$ (which is an affine space).
- Extract, from a family of vectors, a basis of the, subspace that they generate.
- Complete a basis of a subspace Co a basis of the ambient space.
- Determine whether a given matrix is diagonalisable and, if so, construct a basis of eigenvectors and the associated eigenvalues.

1. Kernels and images

Recall that the set of $i u$ solutions of a linear system $A X=Y$ is an affine space of direction ter $A$.


$$
A=\left(\begin{array}{ll}
-1 & 2
\end{array}\right) \quad y=4
$$

$$
X_{0}=\binom{0}{2} \quad \text { ker } A=\operatorname{par}_{\mathbb{R}}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)
$$

Proof:
Assume $\exists X_{0}, A X_{0}=Y$.
Then, for all $X$,

$$
A X=y \text { iff } A\left(X-x_{0}\right)=0
$$

ie. $H:=\left(X-x_{0}\right) \in$ ter $A$.
So $A X=Y$
eff
子 $H \in \operatorname{Ker} A, X=X_{0}+H$.

$$
A x=y
$$

if

$$
\exists \in \in \mathbb{R}, \quad x=\left[\begin{array}{l}
0 \\
2
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

So, to solve $A X=Y$, we need to find one particular solution of that equation, as well as the general solution of the equation $A X=0$.

Example:

$$
\underbrace{\left(\begin{array}{cccc}
1 & 1 & -1 & 5 \\
0 & -1 & 3 & 0
\end{array}\right)}_{A}\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\underbrace{\binom{2}{-1}}_{\boldsymbol{Y}}
$$

Both can be obtained from the Gaussian reduction of the augmented matrix ( $A \mid Y$ ).

$$
\begin{aligned}
& \begin{array}{l}
y=\operatorname{vector}(Q Q,[2,-1]) \\
M=A
\end{array} \\
& M=A \text { augment ( } y \text {, subdivide }=\text { True ) } \\
& \text { show( M ) } \\
& \left(\begin{array}{rrrr|r}
1 & 1 & -1 & 5 & 2 \\
0 & -1 & 3 & 0 & -1
\end{array}\right) \\
& \text { show( M.echelon_form() ) } \\
& \left(\begin{array}{rrrr|r}
1 & 0 & 2 & 5 & 1 \\
0 & 1 & -3 & 0 & 1
\end{array}\right) \\
& \begin{array}{r}
\longrightarrow X_{0}:=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { satisfies } A X_{0}=y \\
\triangle \operatorname{ker} A=\operatorname{spar}\left(\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
0 \\
0 \\
7
\end{array}\right]\right)
\end{array}
\end{aligned}
$$

The Gaussian reduction can also be used co:

- Find a basis of the column space of a matrix.
- Find Linear dependence relations between the columns of a matrix.
- Complete a family of linearly independent vectors to a basis of the ambient space.
\# Let us retake the previous matrix $A$ show (A)

$$
\left(\begin{array}{rrrr}
1 & 1 & -1 & 5 \\
0 & -1 & 3 & 0
\end{array}\right)
$$

\# The rank of $A$ is equal to the number of the number of pivots in Al A1 = A.echelon_form()
show (A1)

$$
\left.\underset{1,0}{\left(\begin{array}{l}
1 \\
0
\end{array}\binom{0}{1}\right.} \begin{array}{r}
2 \\
\hline
\end{array}\right)
$$

$\underset{\substack{1 \\ \text { Tot } \\ \text { colum }}}{\substack{\text { and column (contain the pirots) }}}$
$\left(C_{1}(A), C_{2}(A)\right)$ is a basis of the column space.
Moreover:

$$
\begin{aligned}
& C_{3}(A)=2 C_{1}(A)-3 C_{2}(A) \\
& C_{4}(A)=5 C_{1}(A)+O C_{2}(A)
\end{aligned}
$$

## 2. Diagonalisation

Definition. Let $\mathbb{k}$ be a field and let $n>0$ be an integer. A matrix $A \in \operatorname{Mat}(n \times n ; \mathbb{k})$ is called diagonalisable over $\mathbb{k}$ if there exists a pair of matrices $(D, P)$ in $\operatorname{Mat}(n \times n ; \mathbb{k})$ such that:

1. $D$ is diagonal.
2. $P$ is invertible
3. $A P=P D$.

The last equality means that, for all $j \in\{1 ; \ldots ; n\}$, the $j$-th column of $P$ is an eigenvector for $A$, associated to the $j$-th diagonal coefficient $d_{j}$ of $D$ :

$$
\forall j \in\{1 ; \ldots ; n\}, A C_{j}(P)=d_{j} C_{j}(P)
$$

where

$$
D=\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right)
$$

and $P=\left[C_{1}(P), \ldots, C_{n}(P)\right]$.


Theorem A matrix $A \in \operatorname{Mat}(n \times n ; \mathbb{k})$ is diagonalisable over $\mathbb{k}$ if and only if its characteristic polynomial

$$
f_{A}(t):=\operatorname{det}\left(t I_{n}-A\right)
$$

splits into a product of linear factors

$$
f_{A}(t)=\left(t-a_{1}\right)^{m_{1}} \cdots\left(t-a_{r}\right)^{m_{r}}, a_{j} \in \mathbb{k}
$$

and

$$
\forall j \in\{1 ; \ldots ; r\}, \quad \operatorname{dim} \operatorname{ker}\left(A-a_{j} I_{n}\right)=m_{j}
$$

In other words, $A$ is diagonalisable over $\mathbb{k}$ if and only if its characteristic polynomial $f_{A}(t)$ splits over $\mathbb{k}$ and the geometric multiplicity of of $a_{j}$ as an eigenvalue of $A$ is equal to its algebraic multiplicity as a root of $f_{A}(t)$.

We will now see how to apply this theorem using Sage . Note that sometimes the characteristic polynomial of $A$ is $\operatorname{defined}$ as $\operatorname{det}\left(A-t I_{n}\right)$, which is equal to $(-1)^{n} \times f_{A}(t)$ with $f_{A}(t)$ as above. We have chosen to follow Sage's convention here

```
Example 2, with multiple eigenvalues
A = matrix(QQ, [[2,-3,1], [1,-2,1], [1,-3,2]])
f_A = A.charpoly("t")
show(f_A.factor())
t\cdot(t-1)}\mp@subsup{}{}{2
Sage can show us the eigenvalues of A, counted with their respective mutiplicities
show(A.eigenvalues())
\([0,1,1]\)
\# Similarly, it can show us eigenvectors for A
show(A.eigenvectors_right())
```



$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 3
\end{array}\right)
$$

```
D, P = A.eigenmatrix_right()
```

D, P = A.eigenmatrix_right()
show( D, P )

```
show(D, P)
```

$$
\text { To check: } \quad A P=P D
$$

