· · · · · · · · · · · · · · · · · · ·	
Proseminar on computer-assisted	d mathematics
· · · · · · · · · · · · · · · · · · ·	
Session 4 - Kernels, images	and
diagonalisation in Sagemo	λth
· · · · · · · · · · · · · · · · · · ·	
# Example 1	
A = matrix(QQ, [[2,0,4],[3,-4,12],[1,-2,5]]) f_A = A.charpoly("t")	
t^3-3t^2+2t	
# We can factorise f_A	
show(f_A.factor())	
$\ldots \ldots $	
# And its roots are indeed the eigenvalues of A	
ev_A = A.eigenvalues() show(ev_A)	
[2,1,0]	
	-
· · · · · · · · · · · · · · · · · · ·	
Florent Schaffhauser	
	1
Heidelberg University, Summer sen	MESCET LAND A LAND A
· · · · · · · · · · · · · · · · · · ·	

What u	se want to be able to do:
	Parameterise the set of solutions of a non- homogeneous linear system $AX = Y$ (which is an affine space).
· · · · · · · · ·	Extract, from a family of vectors, a basis of the, subspace that they generate.
· · · · · · · · ·	Complete a basis of a subspace to a basis of the ambient space.
	Determine whether a given matrix is diagonalisable and, if so, construct a basis of eigenvectors and the associated eigenvalues.
· · · · · · · · ·	

Recall that the set of i u	Proof:
solutions of a linear system AX = Y is an affine	Assume $\exists X_0, AX_0 = \gamma$.
system $AX = Y$ is an affine space of direction ker A.	Then, For all X,
	$A X = \gamma$:ff $A(X - X_0) = 0$
$x_1 + 2x_2 = 4$ $x_1 + H$ ker A	i.e. $H := (X - X_0) \in K \cdot r A$.
A A A A A A A A A A A A A A A A A A A	$S_o A X = \gamma$
-6 -4 -2 2 4 6	in a statistical de la statistical de la International de la statistical de la st
$X = \begin{pmatrix} x \\ y \\ y \end{pmatrix}$	$\frac{1}{2} + \frac{1}{2} + \frac{1}$
$A = (-1 \ 2) Y = 4$	$Ax = \gamma$
\mathbf{Y} (0) $\mathbf{F}_{1} = \mathbf{A}$ (0)) $:Ff$ $\exists t \in \mathbb{R}, X = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

So, to solve AX = Y, we need to find one particular solution of that equation, as well as the general solution of the equation AX = 0. $\begin{pmatrix} 1 & 1 & -1 & 5 \\ 0 & -1 & 3 & 0 \end{pmatrix} \begin{pmatrix} y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ Example : Both can be obtained from the Gaussian reduction of the augmented matrix (AY). y = vector(QQ, [2, -1]) $\Rightarrow X_{0} := \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ satisfies $AX_{0} = Y$ M = A.augment(y, subdivide = True) show(M) $\left(egin{array}{ccc|c} 1 & 1 & -1 & 5 & 2 \ 0 & -1 & 3 & 0 & -1 \end{array}
ight)$ $= \frac{1}{2} \left(\begin{bmatrix} -2 \\ -2 \\ 3 \\ -1 \end{bmatrix} \right) \left(\begin{bmatrix} -2 \\ 0 \\ -1 \\ 0 \end{bmatrix} \right) \left(\begin{bmatrix} -2 \\ 0 \\ 0 \\ -1 \end{bmatrix} \right)$ show(M.echelon_form()) $\left(egin{array}{ccc|c} 1 & 0 & 2 & 5 & 1 \ 0 & 1 & -3 & 0 & 1 \end{array}
ight)$

	also be used to:
• Find a basis of the matrix.	column space of a
• Find linear dependence columns of a matrix.	nce relations between the
 Complete a family of vectors to a basis of 	tinearly independent
<pre># Let us retake the previous matrix A show(A)</pre>	$(C_1(A), C_2(A))$ is a basis
# Let us retake the previous matrix A	

Diagonalisation 2. Definition. Let \Bbbk be a field and let n > 0 be an integer. A matrix $A \in Mat(n \times n; \Bbbk)$ is called diagonalisable over \Bbbk if there exists a pair of matrices (D, P) in $Mat(n \times n; \Bbbk)$ such that: 1. D is diagonal. 2. P is invertible. 3. AP = PD. The last equality means that, for all $j \in \{1; ...; n\}$, the *j*-th column of *P* is an eigenvector for *A*, associated to the *j*-th diagonal coefficient d_j of *D*: $orall \, j \in \{1;\ldots;n\}, AC_j(P) = d_jC_j(P)$ where and $P = [C_1(P), \ldots, C_n(P)].$ Cur (p) C,4 "(p) d C (p)

Theorem A matrix $A\in \mathrm{Mat}(n imes n; \Bbbk)$ is diagonalisable over \Bbbk if and only if its characteristic polynomial	
$f_A(t):=\det(tI_n-A)$)
	,
splits into a product of linear factors	
$f_A(t)=(t-a_1)^{m_1}\dots(t-a_r)$	$^{m_r},\ a_j\in \Bbbk$.
and	
$orall j \in \{1;\ldots;r\}, \; \dim \ker(A-q)$	$a_j I_n) = m_j.$
In other words, A is diagonalisable over \Bbbk if and only if its characteristic polynomial $f_A(t)$ splits over \Bbbk an multiplicity as a root of $f_A(t)$.	d the geometric multiplicity of of a_j as an eigenvalue of A is equal to its algebraic .
We will now see how to apply this theorem using Sage . Note that sometimes the characteristic polynomia above. We have chosen to follow Sage's convention here.	al of A is defined as $\det(A-tI_n)$, which is equal to $(-1)^n imes f_A(t)$ with $f_A(t)$ as $\int_{A}^{A} f_A(t) dt dt$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
<pre>Example 2, with multiple eigenvalues A = matrix(QQ, [[2,-3,1],[1,-2,1],[1,-3,2]]) A = A.charpoly("t") how(f_A.factor())</pre>	<pre>D, P = A.eigenmatrix_right() show(D, P)</pre>
$(t-1)^2$	
Sage can show us the eigenvalues of A, counted with their respective mutiplicities . how(A.eigenvalues())	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
[0, 1, 1]	
<pre>Similarly, it can show us eigenvectors for A how(A.eigenvectors_right())</pre>	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 3 \end{pmatrix}$
$0, \left[(1,1,1) ight], 1 ight), (1, \left[(1,0,-1), (0,1,3) ight], 2) ight]$	· · · · · · · · · · · · · · · · · · ·
the of the corresponding	To check: AP = PD