Proseminar on computer-assisted mathematics

Session 1 - Introductory meeting

	import data.real.basic	anter statistica (a. 1996) anterestatistica (a. 1996) Effettiva (a. 1996)	▼02bis_limit_of_f(u n).lean:27:14	
	def sequence_tendsto (u : $\mathbb{N} \rightarrow \mathbb{R}$) (l : \mathbb{R}) :=		▼ Tactic state	
	∀ε>0,∃N:ℕ,∀n>N, un−l < ε		goals accomplished 🎉	
	$\begin{array}{l} \mbox{def continuous_function_at } (f \ : \ \mathbb{R} \ \rightarrow \ \mathbb{R}) \ (x0 \ : \ \mathbb{R}) \ := \\ \forall \ \epsilon \ > \ 0, \ \exists \ \delta \ > \ 0, \ \forall \ x, \ x \ - \ x0 \ < \ \delta \ \rightarrow \ f(x) \ - \ f(x0) \end{array}$	< ε	► All Messages (0)	
	example (f : $\mathbb{R} \to \mathbb{R}$) (μ : $\mathbb{N} \to \mathbb{R}$) (x0 : \mathbb{R})			
	(hu : sequence_tendsto u x0)			
	<pre>(hf : continuous_function_at f x0) : sequence_tendsto (f ∘ u) (f x0) :=</pre>			
	begin			
	show ($\forall \epsilon > 0, \exists N : \mathbb{N}, \forall n > N, f(u n) - f(x0) < 0$	ε),		
	assume ($\varepsilon \varepsilon_{pos}$), have h1 : ($\exists \delta > 0$, $\forall x : \mathbb{R}$, $ x - x0 < \delta \rightarrow f x - f$	x0 < ε) :=	_	
* * * * * *	<pre>by {apply hf, exact ɛ_pos}, reasons h1 with (5 5 nes h2)</pre>			
	have h3 : ($\exists N : \mathbb{N}, \forall n > \mathbb{N}, u n - x0 < \delta$) :=			
	<pre>by {apply hu, exact 6_pos}, rcses h3 with (N = b4)</pre>	Matriaga in Casa		· · · ·
	use N,	Matrices in Sage		
	intros n n_large, apply h2.	When we define a matrix in Sage, we can spec	ify the ring or field in which we take the entries.	
	apply h4,			
	exact n_large, end	Let us for instance consider the matrix		
			$(2 \ 4 \ 6)$	· · · · ·
			4 5 6	
			$\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$	
		and declare it first as a matrix A with entries ir	n $\mathbb Q$, then as a matrix B with entries the field with) seven elements \mathbb{F}_7 .
		<pre>A = matrix(QQ, [[2,4,6],[4,5,6],[3,1, show(A)</pre>	2]])	
* * * * * *	· · · · · · · · · · ·			
	an an an an an an an an an 💭 🖊	orent Schatthe	<i>Nuser</i> i i i i i i i	
			er van verster Aller Verster († 1990) 1999 - Marine Aller Verster († 1990) 1999 - Marine Aller Verster († 1990)	
	Heidelberg Uni	Varsity Sunan	nor connector	2022
	I CARE AND CAR		I Now F	No contra c
		ज्जर		

	Strange and a second	· · · · · · · · · · · · · · · · · · ·
· · · · · · ·	Linear algebra, using so	gemath
	Matrices in Sage	·
	When we define a matrix in Sage, we can specify the ring or field	d in which we take the entries
	Let us fer instance consider the metric	
	Let us for instance consider the matrix	
		$\begin{pmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \end{pmatrix}$
		$\begin{pmatrix} 4 & 0 & 0 \\ 3 & 1 & 2 \end{pmatrix}$
	and declare it first as a matrix A with entries in $\mathbb Q$, then as a matrix	trix B with entries the field with seven elements $\mathbb{F}_7.$
	A = matrix(QQ, [[2,4,6],[4,5,6],[3,1,2]]) show(A)	
	(-2, 1, 1)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$ \dots $)
	· · · · · <mark>· · · · · · · · · · · · · · </mark>	<u> </u>
	Proof assistants using	lean
	rice, according, according.	
• • • • • •		
	def sequence_tendsto ($u : \mathbb{N} \to \mathbb{R}$) (1 $\mathbb{M} \in \mathbb{N} \oplus \mathbb{R} \to \mathbb{N} \oplus \mathbb{N} = \mathbb{N}$: R) :=
	v = 0, = N, N, V = N, u = 0	
	def continuous_function_at (f : $\mathbb{R} \rightarrow \mathbb{R}$	$\mathbb{R}) (x0 : \mathbb{R}) := $
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	example (f : $\mathbb{R} \to \mathbb{R}$) (u : $\mathbb{N} \to \mathbb{R}$) (x0 (but a converse tendete u x0)	:R)
	(hf : continuous_function_at f x0)	
	converse tendsto $(f \circ u)$ $(f \times 0)$	

Programme

Topics of linear algebra to be covered in the seminar:

- Computer algebra systems. Representations of vectors and matrices.
- Row operations. Gaussian elimination. Row-reduced echelon form of a matrix.
- Invertible matrices. Elementary matrices. Determinant.
- Linear independence. Bases for the kernel and the image of a linear transformation.
- Rank-nullity theorem and the row space of matrix. Basis for the row space.
- Base change. Coordinates of a vector, matrix of a linear transformation.
- Eigenvalues and the characteristic polynomial. Diagonalisation.
- The Gram-Schmidt process. Least-square approximation.

Aspects of the *Lean* programming language to be covered in the seminar:

- Installation of a proof assistant. Familiarisation with the interface.
- The Natural Number Game (Peano axioms and the induction principle).
- Equality and computations (tactics to prove algebraic identities).
- Implications and equivalences (propositional logic).
- Predicates and quantifiers (first-order logic).
- Contraposition and proof by contradiction (proof tactics).
- Formalisation of basic mathematical statements.

The seminar is collaborative and project-based.

To pass, attendance is mandatory (unless excused in advance). Schedule

#	Date	Торіс	Speaker	Slides	Code	٠	•	• •	٠	
1	19/04	Introductory meeting	Florent Schaffhauser					• •		
2	26/04	Matrices in Sage (introduction)	Florent Schaffhauser			٠	٠	• •		
3	03/05	Working in pairs	N/A			•	•			
4	17/05	Kernels, images, bases and diagonalisation	Florent Schaffhauser			٠		• •		
5	24/05	Project prepararation	N/A			•	•		•	
6	31/05	Project presentation	In pairs			•		• •		•
7	07/06	Introduction to Lean	Florent Schaffhauser			•	•			
8	14/06	Natural Number Game	N/A			٠		• •		
9	28/06	Working in pairs	N/A							
10	05/07	Formalising basic mathematical objects	Florent Schaffhauser			•	•			
11	19/07	Project preparation	N/A							
12	26/07	Project presentation	In pairs			•	•	• •		
• •							٠			
-> Teona un soola!						•				
Choose a project (later).										
					•					

Pro	actical organization
. 	Minimal requirements • At least one computer / tablet per team.
Before 26.04	 Create individual GitHub accounts. <u>https://github.com</u> Join the seminar's Zulip channel. <u>https://matematiflo.zulipchat.com</u>
. 	Advanced option (facultative) • Install Sagemath. https://doc.sagemath.org/html/en/installation/index.html
. 	• Install JupyterLab. <u>https://jupyter.org/install</u>