HE	GL Illustrating Winter Seme	Mathema ster 2024	tics Semin 2025	
	gic, algebra and	l proof v	isualizati	
	Florent Scl Heidelberg	haffhauser University	

What	is a mathematical proof and how can we represent it?
	In this seminar, we take a constructive approach to this question. Proving a theorem means constructing a proof of it much like when you introduce a term of a
 . .<	certain type in a programming language. The underlying logical foundations of this approach make functions the primitive object, from which everything else is defined.
	certain type in a programming language. The underlying logical foundations of this approach make functions the primitive object, from which everything else is defined.
 . .<	certain type in a programming language. The underlying logical foundations of this approach make functions the primitive object, from which everything else is defined.
	certain type in a programming language. The underlying logical foundations of this approach make functions the primitive object, from which everything else is defined.
	certain type in a programming language. The underlying logical foundations of this approach make functions the primitive object, from which everything else is defined.
	certain type in a programming language. The underlying logical foundations of this approach make functions the primitive object, from which everything else is defined.

Can	we	use	this	to	• •	
vent	ure	a 9	uess	as	to	
how	mal	then	natic	SW	ill	be
taug	he o	le th	e un	ive	rsil	ty .
level	50	yeo	irs fi	ron	nn	ow?

Programming Language and Theorem Prover

		\leftarrow	→ [\wp mathlib4				ШЕ							
3 =	SumsOfSquares.lean $ imes$	Defs.lean		\Box	∀ ⊘ ถํን 🗞 🖽 …	\equiv Lean Infoview $ imes$									
Ma	athlib > Algebra > Ring >	SumsOfSquares.lea	n > 🕎 isSumSq.add			▼ SumsOfSquares.le	ean:60:52								
) 4	0 variable {R :	Type*}				▼Tactic state		-⇔ II	U						
4	1					No goale		"	· 7						
4	2 /									•		•			•
4	3 In a type `R`	with an addition, a	zero element and a multipli	cation, the property	of being a sum of	Expected type		"	· Y						
4	4 squares is det	ined by an inductive	predicate: 0: R is a su	Im ot squares and it	S is a sum or	R : Type u_1				•	•	•	*	•	*
> 4	6 –/	ioracia, K, a		5 111 K .		instf ¹ : AddMor	101d R								
4	7					SI S2 · P				•	•	•	•	•	
4	8 @[mk_iff]					p2 : isSumSa S2	2								
4	9 inductive isSu	mSq [Add R] [Zero R]	[Mul R] : R → Prop			⊢ isSumSq S2									
5	0 zero		: isSumSq 0												
5	1 sq_add (a	S : R) (pS : isSumSq	S) : $isSumSq (a * a + S)$			All Messages (0)			H.						
5	2				1										
	4 If `S1` and `S	2` are sums of squar	es in a semiring \mathbf{B} , then	`S1 + S2` is a sum of	squares in `R`.										
5	5 -/		es an a semarany ny chen		bquarob an n					•	•	•	*	•	
=× 5	6														
5	7 theorem isSumS	q.add [AddMonoid R]	[Mul R] {S1 S2 : R} (p1 : i	sSumSq <mark>S1)</mark>						•	•	•	*	•	
5	8 (p2 : isSu	mSq <mark>S2) :</mark> isSumSq (S	1 + S2) := by												
5	9 induction p1	with	and addle and all												
6	1 sq add a S	=> rewrite [z	ero_add]; exact pz dd assocl: exact isSumSq sq	add a (5 ± 52) ib											
	2	po in -> rewrite to	du_associ, exact issumsq.su	[_duu a (5 + 52) II											
6	3 variable (R) i	n													
. 6	4														
6	5 /									•		•	•		4
6	6 In an additive	monoid with multipl	ication `R`, the type `SumS	SqIn R` is the submond	oid of sums of										
6	7 squares in R									•	*	•	*	•	
6	9														
7	0 def SumSgIn [A	ddMonoid R] [Mul R]	: AddSubmonoid R where										-	÷	
3) 7	1 carrier :=	<pre>{S : R isSumSq S}</pre>													
7	2 zero_mem':=	isSumSq.zero													
33 7	3 add_mem' :=	isSumSq.add						Res	tart File						
7	4														
له مح	ematiflo-semireal-rings-de	efs ↔ ⊗ 1 △ 0 🛈 1	🖗 0 🛛 ፤ን Pull Request #14941	\checkmark	Ln e	60, Col 53 Spaces: 2 U	TF-8 LF	lean4	8 0			•	•	*	•

Constructive mathematics

The constructive approach to mathematics is often reduced (quite misleadingly) to mathematics *without* the law of excluded middle (LEM), or without the axiom of choice (AC). It should instead be thought of as a sum of algorithmic procedures for deriving proofs, which *may or may not* use LEM or AC.

Conceptually, this is made possible by an interpretation of mathematical statements in a way that lays the emphasis on computation. Existential statements, in particular, should be formally interpreted in a constructive manner (which calls for an explicit construction of an element satisfying a certain property).

Additionally, logic is not a pre-requisite in this approach. Instead, logical connectives and quantifiers are introduced formally in constructive mathematics, using the same language used to introduce mathematical objects.

List of topics for the talks	coordinator.											
 Sets and logic. Basic algebra. Rings and modules. Divisibility in discrete domains. Principal ideal domains. 	This talk, and its corresponding handout,											
	will count towards 50% of											
· · · · · · · · · · · · · · · · · · ·	the final grade.											

In the seminar, we will focus on undergraduate commutative algebra: rings, fields and algebras over a field.

As a first step, participants will give a presentation on a subject of their

choice from the list of

In the second step, we will work collaboratively to elaborate an online tutorial to some of the mathematical results presented in the first part.

Lean Game Server

A repository of learning games for the proof assistant Lean (Lean 4) and its mathematical library mathlib

Natural Number Game

The classical introduction game for Lean.

In this game you recreate the natural numbers $\mathbb N$ from the Peano axioms, learning the basics about theorem proving in Lean.

This is a good first introduction to Lean

Robo

Erkunde das Leansche Universum mit deinem Robo, welcher dir bei der Verständigung mit den Formalosophen zur Seite steht.

Dieses Spiel führt die Grundlagen zur Beweisführung in Lean ein und schneidet danach verschiedene Bereiche des Bachelorstudiums an.

(Das Spiel befindet sich noch in der Entstehungsphase.)

The ideal output is a kind of "Heidelberg Lean game" that can be played online by future generations of students, to teach themselves the basics of typetheoretic mathematics.

Paperproof

A new proof interface for Lean 4.

E ForVideos.le	an ×								Lean	Infovie	W	≣ Pa	perpro	oof ×				\forall	Uther pro
<pre>import Mathlib.Data.Set.Basic import Paperproof theorem commutativityOfIntersections (s t : Set Nat) : s n t = t n s := by ext x apply Iff.intro intro h1 extext.set.mem_inter_iff, and_comm] at h1</pre>								s: Set init ext x x: N	N t	:: Set N		i	ntro h2				technique or Verbos too.		
11 exa 12	ct hl									h1: x	∈s∩t				<mark>h2:</mark> x ∈	t n s			
13 int 14 rw	ro h2 [Set.mem_int	er_iff,	and_co	mm] at	h2					rw [S	et.men	n_inter_	iff]	r	w [Set.	.mem_i	nter_if	f]	
15 exa 16	ct h2									h1: x	∈S∧X	∈t			h2: X ∈	t ∧ x ∈ :	S		The final
										rw [a	nd_cor ∈t∧x	nm] ∈s		r	w [and n2: x ∈	_comm	t		A sum and the Life
																Ļ			HEGL DLO
										y	🕴 exac	t h1 🎉			% (exact h	2 🎉		a solution in the section of the sec
										x ∈ t	n s			>	K ∈ S ∩ 1	t			scudents,
							intro x e s	h1 ∩t→x	etos			ntroh2	s → x ∈	sot		the remai			
											h.m	np				h.mpr			
										x ∈ S ∩	t ↔ x ∈	tns							grade.
										ext x									
										s∩t=	tns		th a						
													the	orem					
																			import Verbose_English.ExampleLib
• •		• •					•			•		٠	•			•		•	set_option verbose.suggestion_widget true
	• •	• •	٠	٠	٠	٠	٠	•	٠	0		٠	•		•	٠	٠	٠	Exercise "Continuity implies sequential continuity" declaration use Given: (f: $\mathbb{R} \to \mathbb{R}$) (u: N $\to \mathbb{R}$) (x_0 : \mathbb{R}) Assume: (hu: u converges to x_0) (hf: f is continuous at x_0) Conclusion: (f \star u) converges to f x_n .
• •	• •	• •	•	•	•	•	•		•	٠		•	•	•	•	•	٠	•	Proof: Let's prove that $\forall \epsilon > 0$, $\exists N, \forall n \ge N$, $ (f \circ u) n - f x_0 \le \epsilon$
		• •	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	By hf applied to ε using that $\varepsilon > 0$ we get δ such that $(\delta_pos : \delta > By hu applied to \delta using that \delta > 0 we get N such that hN : \forall n \ge N,Let's prove that N works: \forall n \ge N, (f \circ u) n - f x_0 \le \varepsilon$
																			By hN applied to n using that $n \ge N$ we get H : $ u\ n\ -\ x_0 \ \le\ \delta$
• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	QED
• •	• •	• •	*	•	*	•	•	•	٠	•	•	٠	•	•	•	•	•	•	
	• •	• •	•	•	۰	•	٠	٠	٠	٠	٠	٠	٠	٠	٠		•	٠	
• •																			
• •	• •	• •	•	٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•

Other proof visualization techniques such as Paperproof or Verbose might be explored too. The final presentation and HEGL blog post, by the students, will count towards the remaining 50% of the grade.

	* Tactic state 1 goal f: R → R V: N → R X ₀ : R
(hδ : Ψ (x : ℝ), x - x ₀ ≤ δ → f x - f x ₀ ≤ ε) υ n - x ₀ ≤ δ	$ \begin{array}{l} h: : u \ converges \ to \ x_0 \\ h: f: f \ is \ continuous \ at \ x_0 \\ \varepsilon : \mathbb{R} \\ \varepsilon \ pos: \varepsilon > 0 \\ \delta: \mathbb{R} \\ \delta \ pos: \delta > 0 \\ \hline m : v \ (x: \mathbb{R}), \ x \ - x_0 \le \delta \rightarrow f \ x \ - f \ x_0 \le \varepsilon \\ \hline m : N \\ h: v \ (x: \mathbb{R}), \ u \ n \ - x_0 \le \delta \\ n: N \\ h: v \ n \ge N, \ u \ n \ - x_0 \le \delta \\ \hline m : N \\ h: v \ n \ge N, \ u \ n \ - x_0 \le \delta \\ \hline m : N \\ h: v \ n \ge N, \ u \ n \ - x_0 \le \delta \\ \hline m : V \\ h: v \ n \ge N, \ u \ n \ - x_0 \le \delta \\ \hline m : V \\ h: v \ n \ge N, \ u \ n \ - x_0 \le \delta \\ \hline m : V \\ h: v \ n \ n \ x_0 \ n \ n \ n \ n \ n \ n \ n \ n \ n \ $
	All Messages (1)