Seminar on Computer-assisted mathematics

Judith Ludwig, Florent Schaffhauser and Junyan Xu
Heidelberg University - Summer semester 2025

Session 5 - May 22, 2025



Searching Mathlib

Today we'll learn about searching Mathlib.

Broadly, there are two kinds of search tools:
@ Exact search: Mathlib4 documentation, Loogle, and code search

o Fuzzy, semantic search: LeanSearch and LeanExplore


https://leanprover-community.github.io/mathlib4_docs/
https://loogle.lean-lang.org/
https://leansearch.net/
https://www.leanexplore.com/

Mathlib4 documentation (docs)

@ The game is to guess the name of the declaration (theorem/lemma or
def) that you want to find. To guess correctly more often you may
want to familiarize yourself with the Mathlib naming conventions. The
name usually includes the most important declarations (“constants”)
mentioned in the statement.

@ The search functionality of the mathlib4 docs matches possibly
non-consecutive occurrences of the characters in the input string in
the particular order. Lowercase letters can match the corresponding
uppercase letters, but not vice versa.

@ For example, searching for aeval will find minpoly.aeval,
Module.AEval, but also RatFunc.eval. Searching for Aeval will find
Module.AEval but not the other two.

@ The ordering of the search results is not ideal; Polynomial.aeval
doesn't appear in the 30 search results even though it's more basic
than (in fact used in) minpoly.aeval.


https://leanprover-community.github.io/contribute/naming.html

Mathlib4 documentaion (docs)

@ Apparently it doesn't match docstrings, or maybe there is too much
noise so it is not an effective way to search docstrings.

@ Updated three times a day to the latest Mathlib4 master branch.



Loogle

@ Loogle is the choice if you are looking for declarations relevant to one
or a set of declarations, e.g. when you are working on a particular goal
and want to find lemmas that can reduce it to simpler goals or defs
that constructs data of a particular type.

@ For example, searching for AlgHom, Polynomial will return
Polynomial.aeval as the second result.

@ If you think a string of characters is likely to occur in the declaration
name, you might include them as a keyword (case insensitive) using
quotation marks: searching for minpoly, "unique" will return
minpoly.unique, for example.

@ Can be used in VSCode (but still requires Internet connection): just
type e.g. #loogle AlgHom, Polynomial.

@ For offline use, see Zulip discussion.


https://leanprover.zulipchat.com/#narrow/channel/287929-mathlib4/topic/Loogle.20offline/near/515810430

Code search

VSCode / GitHub search
@ Matches consecutive characters by default, including in docstrings;
regular expressions are also supported.
@ No proper ordering of search results because VSCode/GitHub aren't
aware of the dependency between declarations.
@ For example, if you are not sure about the proper syntax to invoke the
tactic wlog, searching for wlog will give you code samples.

@ You can also search pull requests and issues with GitHub search.


https://code.visualstudio.com/docs/editing/codebasics#_search-across-files
https://github.com/search?q=repo%3Aleanprover-community%2Fmathlib4%20aeval&type=code
https://github.com/search?q=repo%3Aleanprover-community%2Fmathlib4+wlog&type=code

Semantic search

@ LLM-powered, retrieval-based

@ Current services include LeanSearch, LeanExplore (new from May
9th), and Moogle (not up-to-date)

@ Use when you are interested in some mathematical result but are not
sure in what form it could be stated in Mathlib, not even what
constants the statement might involve.

@ Example: searching law of cosine in LeanSearch.


https://leansearch.net/
https://www.leanexplore.com/
https://leanprover.zulipchat.com/#narrow/channel/113488-general/topic/Discussion.3A.20LeanExplore/near/517187761
https://leanprover.zulipchat.com/#narrow/channel/113488-general/topic/Discussion.3A.20LeanExplore/near/517187761
https://www.moogle.ai/
https://leansearch.net/?q=law%20of%20cosine

Tracing Mathlib history: Mathlib changelog

@ Mathlib is a large collaborative project with many contributors. It
saves time and effort if you can connect to people with expertise on a
part of the library / codebase that you are working on.

@ Mathlib changelog makes it easy to find out when (in which pull
request / commit) a declaration is added, changed, or removed.

@ Useful if you want to go to the pull request to find out the responsible
author(s) to contact and discussions (or links to Zulip discussions)
about design choices, etc.


https://mathlib-changelog.org/v4

Tracing Mathlib history: Git blame

o Git itself tracks history pretty well, and allows you to find out who
made changes to a particular line of code. This info can be shown
right next to the code using GitLens, in command line via git blame,
or via GitHub's interface:

@ Go to an arbitrary file on GitHub, and then press B, you'll see when
and by whom each block of code was last changed. There is a button
you can press to see the state before the change, so you can trace the
history recursively.

@ It may lose track if contents are moved across files (e.g. when a file is
split into multiple parts), and in such case you need to go to the file
containing the declaration before the move to continue tracing.

@ Some old declarations trace all the way back to the archived Mathlib3
repo (also check out Mathlib3 changelog).


https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens#interactive-code-history
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/RingTheory/UniqueFactorizationDomain/Basic.lean
https://github.com/leanprover-community/mathlib3
https://github.com/leanprover-community/mathlib3
https://mathlib-changelog.org/v3

Searching for tactics

Tactic cheatsheet: useful for figuring out whether there is a tactic for a
specific task. Includes many tactics that we don't have time to introduce.
Tactics missing from the cheatsheet include rintro (combining intro and
obtain, can also perform substitution when fed rf1). (rcases is subsumed
by obtain and the code is shorter with obtain.

Commands missing from the cheatsheet include #find_home and
#trans_imports, though only relevant when you want to contribute to
Mathlib. If #find_home <declaration_name> tells you a proper file to put
your result, great. Otherwise, you can experiment with adding imports to
an existing file and #trans_imports "Mathlib." tells you how many
transitive imports are introduced.

The tactics pages of the Mathlib Manual are more detailed.


https://leanprover-community.github.io/papers/lean-tactics.pdf
https://leanprover-community.github.io/mathlib-manual/html-multi/Tactics/#tactics

Projects

Projects are now available in the main branch.

Judith's projects: Principal Ideal Domains, Noetherian Rings
Florent's projects: Affine Isometries, Polynomial Function
Junyan's projects (roughly from easiest to most difficult):

PrimitiveRoots, CoinProblem, Kuratowski, CoinTheorem, degree ratFunc
All of these shall be made pull requests to Mathlib when completed.


https://github.com/matematiflo/CompAssistedMath2025/tree/main/Projects

Assignment

Our next session is on June 5th. Your assignment for next week is:
© Choose a project.
@ Get started. Make sure you understand the maths first.



