
Seminar on Computer-assisted mathematics

Judith Ludwig and Florent Schaffhauser

Heidelberg University - Summer semester 2025

Session 2 - April 24, 2025



Fundamental concepts from Lecture 1

Curried functions.

Nat.add 1 2 = 1 + 2

Inductive types (e.g. Nat or Bool).

inductive Prod (X : Type) (Y : Type) : Type where
| mk (x : X) (y : Y) : Prod X Y

Pattern-matching on constructors to construct functions that go out
of an inductive type.

def add_u : Nat × Nat → Nat :=
fun (t : Nat × Nat) 7→ match t with
| Prod.mk m n => m + n



Propositions as types and proofs as programs

Propositions are a special kind of type, in which proof irrelevance
holds (if P : Prop and p q : P, then p = q).
Propositions can be defined inductively, in which case one can pattern
match on constructors.

inductive False : Prop where

def False.elim (P : Prop) : False → P :=
fun (t : False) 7→ nomatch t

A well-formed proposition is not necessarily inhabited.

def Fallacy : Prop := 2 + 2 = 5
#check Fallacy -- Fallacy : Prop

def proof : Fallacy := sorry -- declaration uses ’sorry’
#check proof -- proof : Fallacy



Sum types

The sum of two types X and Y is constructed as an inductive type with
two constructors.

inductive Sum (X : Type) (Y : Type) : Type where
| inl (x : X) : Sum X Y -- "injection from the left"
| inr (y : Y) : Sum X Y -- "injection from the right"

Sum X Y can also be denoted by X ⊕ Y. In set theory, the analogous
notion is that of disjoint union of two sets.
To define functions out of a sum, we can pattern-match on the
constructors.

def charac_left {X : Type} {Y : Type} : X ⊕ Y → Bool :=
fun (t : X ⊕ Y) 7→ match t with
| Sum.inl (x : X) => Bool.true
| Sum.inr (y : Y) => Bool.false



Disjunctions

Let P and Q be propositions.
Then the types P → Q and P × Q are propositions. But the type
P ⊕ Q is not necessarily a proposition (for instance, the type
True ⊕ True does not satisfy proof irrelevance).
We can construct a proposition P ∨ Q by identifying any two terms in
P ⊕ Q. This can be viewed as taking a quotient of P ⊕ Q by the
trivial equivalence relation (just one equivalence class).
In particular, the canonical projection π from P ⊕ Q to P ∨ Q satisfies
the universal property of a quotient: for all f : P ⊕ Q → R such that,
for all t, t ′ in P ⊕ Q, f (t) = f (t ′), there is a unique map
f̂ : P ∨ Q → R such that f ◦ π = f .

P ⊕ Q

P ∨ Q R

π f

∃! f̂



Fallunterscheidung

Note that the compatibility condition for f : P ⊕ Q → R is necessarily
satisfied if R is a proposition. So, to prove an implication of the form
P ∨ Q → R (where R is a proposition), it suffices to construct a
function f : P ⊕ Q → R.
This is done via pattern-matching, which in this case can also be
viewed as a universal property.

P

P ⊕ Q R

Q

f1

Sum.inl
∃!

f2

Sum.inr

So the typing system is telling us to prove an implication of the form
P ∨ Q → R by case analysis: first assume P and deduce R, then
assume Q and deduce R.



Falsity and negation

It was a seminal insight of N. de Bruijn’s (the creator of Automath1)
that, when viewed as a type, a proposition is to be deemed proved if,
and only if, the corresponding type is inhabited.
From that point of view, the negation ¬P of a proposition P should
be defined without any reference to whether P has a proof or not.
And indeed we have:

¬P := (P → False)

So, by definition, proving ¬P means proving that, given a proof of P ,
we can construct a proof of False, which is considered an absurdity.
With this definition, we can prove a number of tautologies
(propositions depending on other propositions and which are inhabited
regardless of whether the ones they depend on are inhabited). For
instance ¬P ∧ P → False (special case of modus ponens) or
P → ¬¬P (exercise!).

1The first programming language equipped with a type-checking algorithm,
implemented in 1967. It was followed by Mizar, due to A. Trybulec, in 1973.

https://en.wikipedia.org/wiki/Nicolaas_Govert_de_Bruijn
https://en.wikipedia.org/wiki/Automath
https://en.wikipedia.org/wiki/Mizar_system
https://en.wikipedia.org/wiki/Andrzej_Trybulec


Constructive vs. classical logic

Let us now compare (P → Q) and ¬(P ∧ ¬Q). The following program
provides a proof of the implication (P → Q) → ¬(P ∧ ¬Q). The
keyword theorem is used as a synonym of def, when the target type is
a proposition.

theorem classical_imp {P Q : Prop} : (¬P ∨ Q) → (P → Q) :=
fun (t : ¬P ∨ Q) 7→ match t with
| Or.inl (f : P → False) => fun (p : P) 7→ False.elim (f p)
| Or.inr (q : Q) => fun (p : P) 7→ q

The reverse implication actually does not hold constructively. To prove
it for all P, Q, you would need to use ¬P ∨ P, which you get from the
Law of Excluded Middle. Note that the constructive approach is more
general (less axioms).
In Lean, you can choose to work constructively or classically. In
Mathlib, most proofs use classical logic in one form or another. As an
exercise, you can show that the implication (P → Q) → ¬(P ∧ ¬Q)
holds constructively but that its converse uses ¬Q ∨ Q .

https://en.wikipedia.org/wiki/Law_of_excluded_middle


Logical equivalences

The type of logical equivalences P ↔ Q is also defined inductively. Its
terms are pairs ⟨f, g⟩ where f : P → Q and g : Q → P.

inductive Iff (P Q : Prop) : Prop where
| intro : (P → Q) → (Q → P) → Iff P Q

Note that the target type of a constructor is always the inductive type
that is being defined by that constructor.
In Lean and other modern proof assistants, most (but not all)
inductive types with only one constructor are passed as structures,
which are not technically part of Martin-Löf’s type theory but are
useful for the implementation (they are record types, declared using
the keyword ‘structure‘).

structure Iff (P Q : Prop) : Prop where
intro :: (mp : P → Q) (mpr : Q → P)



De Morgan’s laws

A good way to manipulate these concepts is to prove De Morgan’s
laws, starting with the first one:

¬(P ∨ Q) ⇐⇒ ¬P ∧ ¬Q

In the second De Morgan rule, only one implication can be proved
constructively, namely ⇐.

¬(P ∧ Q) ⇐⇒ ¬P ∨ ¬Q

We will do that in a forthcoming practice file on Logic in Lean.

https://en.wikipedia.org/wiki/De_Morgan%27s_laws
https://en.wikipedia.org/wiki/De_Morgan%27s_laws


A universe of types!

Type

Nat

Bool

Nat → Nat

Nat × Nat True ⊕ True

Prop

True False P ↔ Q

P ∨ Q P ∧ Q P → Q

| zero
| succ (n : Nat)

| true
| false

fun n 7→ n + 1
fun n 7→ . . .

(fst : Nat)
(snd : Nat)

| inl (t : True)
| inr (t : True)

| trivial (mp : P → Q)
(mpr : Q → P)

| inl (p : P)
| inr (q : Q)

(p : P)
(q : Q)

fun p 7→ ?



Lean’s tactic mode

Lean’s tactic mode can assist us in writing a program. To enter tactic
mode, one simply puts the keyword by after the := sign.
This will be reflected in the infoview, which should display the goal of
the program. This goal is what appears after the turnstile symbol ⊢.
To see the goal in term mode, you can use the underscore symbol _.
To close a goal in tactic mode, we need to use so-called tactics, like
the exact tactic in the example below. Each new line must start with
a tactic.

def a : Nat :=
by { -- ⊢ Nat

exact 42 -- No goals
}

Note that the goal of a program is always a type (which may or may
not be a proposition).



Basic tactics for deductive reasoning

The basic tactics we shall need are the following:
exact and apply

intro and revert

constructor

cases and rcases

left and right

rfl

exact? and apply?

refine

All of these are presented in our practice file on Basic Tactics.

https://live.lean-lang.org/#url=https%3A%2F%2Fmatematiflo.github.io%2FCompAssistedMath2025%2FPracticeFiles%2FBasicTactics.lean


Tactic proofs of the modus ponens rule

Let us use tactic mode to prove the modus ponens rule. The point is to
see the proof state and the goal evolve after each use of a tactic, until the
goal is closed.

theorem mp {P Q : Prop} : (P → Q) ∧ P → Q :=
by {

intro t
cases t with
| intro f p =>
exact f p

}

For comparison, the term mode proof would be of a similar length, but in
term mode the infoview does not show anything when the goal is closed,
except the absence of an error message.

theorem mp {P Q : Prop} : (P → Q) ∧ P → Q :=
fun t 7→ match t with | And.intro f p => f p



Recap and practical activity

As we have seen in examples, a proof is a program. To prove a
proposition, we have to construct a term of the relevant type. We can
write a proof either in term mode or in tactic mode.
In tactic mode, we get assistance from the kernel to help us write our
proof: the infoview shows a goal (which is a type) and a context
(which is a list of terms, of various types).
Goal and context put together constitute the proof state. As we
introduce tactics, our context and goal will change, until the goal is
closed via unification, which occurs when a term is constructed, whose
type coincides with the goal.

To manipulate the concepts seen in this lecture, you can try your hand at
our Basic Tactics file!

https://live.lean-lang.org/#url=https%3A%2F%2Fmatematiflo.github.io%2FCompAssistedMath2025%2FPracticeFiles%2FBasicTactics.lean

