
Seminar on Computer-assisted mathematics

Judith Ludwig and Florent Schaffhauser

Heidelberg University - Summer semester 2025

Session 1 - April 17, 2025



In this seminar, we will learn how to formalize mathematics in the proof
assistant Lean. Let us explain what that means.



Formalizing mathematics

Formalizing mathematics means expressing mathematical concepts,
theorems and proofs in a formal language; according to the syntactic rules
and grammar of the language. This can help understand the structure and
steps of a proof.
The idea is not new, e.g.

Leibniz had the idea of a universal formal language, the
characteristica universalis,
Introduction of ZFC aiming to avoid Russel’s paradoxes in set theory.

Today, formalizing mathematics means representing mathematical
concepts, theorems, and proofs in a programming language, in a way that
can be verified by computers. This is done using so called proof
assistants.



Proof assistants

A proof assistant is a piece of software that assists with writing formal
mathematics by human-machine collaboration.

It provides a computer language for defining objects, specifying
properties of these objects, and proving that these properties hold.
This computer language is sometimes specifically developed.
When the user enters a proof in the formal language, the system
checks two things:

1 That the syntax of the proof is correct with respect to the
grammatical rules of the language.

2 That the proof is indeed a proof of the statement that it claims to
prove. This process is called type-checking and it is the key to formal
verification: if the proof type-checks, the theorem is proved!

The system also gives feedback to the user, in particular in the form
of error messages. This is why proof assistants are also called
interactive theorem provers.



Examples of proof assistants:
Lean
Coq, Agda
HOL Light, Isabelle
Mizar
...

Example of a proof assistant environment:



Examples of proof assistants:
Lean, Coq, Agda, HOL Light, Isabelle, Mizar, ...

In this seminar, we will work with Lean.

Each proof assistant implements a particular logic.

For example:
Mizar implements set theory.
The logic that Lean implements is called dependent type theory.
Same for Coq and Agda.
HOL Light and Isabelle use what is called simple type theory.



What proof assistants are not:
They are not calculators. Asking proof assistants to compute

√
3 is not a

sensible thing to do. The real number
√

3 is the positive real number that
solves x2 − 3, and it is precisely that number and any approximation of it is
not

√
3.

They are not automated theorem provers.

But they might come with some automation tools.



Some motivation for formalizing mathematics.

Verification of mathematics, in particular of modern research
results/ articles.
Documenting mathematics in a gap and error free way.
Build searchable libraries of mathematics.
Educational tools / Teaching tools. Interactive textbooks.
Mechanization / Automation of mathematics.
AI.

Proof assistants are being used for work on all of these.



Lean

Lean is a functional programming language and a proof assistant.
Functional programming language means that functions are the
primary building blocks. Programs are made by applying and
composing functions.
Lean was created by Leonardo de Moura at Microsoft Research in
2013.
Lean is an open-source development, and since 2023 is also being
developed at the Lean Focused Research Organization.



The Lean community is building a library. It is called mathlib4, and it
currently looks like this:



Mathlib4

Mathlib is “a community-driven effort to build a unified library of
mathematics formalized in the Lean proof assistant."
As of last week, Mathlib

contains 103041 definitions and 205699 theorems,
from 556 contributors,
is maintained by 28 mathematicians and computer scientists.

We will be using Mathlib for the projects in this seminar.

https://leanprover-community.github.io/mathlib-overview.html


A tiny bit on type theory in Lean

Recall that in set theory:
Sets are the primary objects and everything else is built out of them. For
instance, a function f : X → Y is defined via its graph Γ, a subset of
X × Y . You can form sets like {2, cos} and statements like Z ∈ {π}
formally make sense.
In Type theory:
Types are the primary notion. Everything has a type and you have to
specify it, e.g.

2 : N

says, 2 is a natural number.
We say 2 is a term of type N.



Similarly,

cos : R → R

says the type of cos is a function from R to R.
The type of 2 and of cos is different, so something like {2, cos} wouldn’t
make sense to Lean. Writing the statement Z ∈ {π} would result in a type
error.
The type is unique.
This means for example that 2 : N and 2 : R are different things.
This is confusing, because in mathematics we always automatically identify
them without even thinking about it. Lean has an automatized mechanism
to convert natural numbers to real numbers. It is called a coercion and it
is used all the time.



Functions

There are various ways to declare functions in a programming language
such as Lean (declarative and statically-typed). For instance via a formula:

def square : Nat → Nat :=
fun (n : Nat) => n * n

#eval square 2 -- 4

The above definition makes sense because all the terms in the formula
have been previously defined. In particular, a product function * has
already been defined for natural numbers.
That product function * takes two natural numbers and returns a
natural number, so the function square is well-typed (it indeed takes
a natural number and returns a natural number, as demanded by the
type signature Nat → Nat of that function).



Recursive definitions

Functions can also be introduced via pattern-matching (which can be
viewed as a form of case analysis):

def fact : Nat → Nat :=
fun (n : Nat) => match n with
| 0 => 1
| k + 1 => (k + 1) * (fact k)

#eval fact 3 -- 6

Note that the function fact calls on itself:

fact 3 = 3 * (fact 2)
= 3 * (2 * (fact 1))
= 3 * (2 * (1 * (fact 0))
= 3 * (2 * (1 * 1))
= 6

Lean uses a feature called structural recursion to guarantee that, for all
natural number n, this process terminates.



Curried functions

Functions of two variables can be introduced using product types, as we
usually do in mathematics (uncurried notation):

def add_u : Nat × Nat → Nat :=
fun ((n, m) : Nat × Nat) => n + m

#eval add_u (1, 1) -- 2

Or as a function that sends a term to a function (curried notation1):

def add : Nat → (Nat → Nat) :=
fun (n : Nat) => (fun (m : Nat) => n + m)

#eval (add 1) 1 -- 2

1Thus called in honor of Haskell Curry (1900-1982), an American logician,
mathematician, and computer scientist.

https://en.wikipedia.org/wiki/Haskell_Curry


Functional programming

Curried functions can also be declared as follows, removing unnecessary
brackets in the type signature and listing all arguments at once:

def add : Nat → Nat → Nat :=
fun (n : Nat) (m : Nat) => n + m

Note that we can simply write add 1 1 instead of (add 1) 1.

#eval add 1 1 -- 2

This notation becomes particularly useful for functions of three variables or
more. Note that we do not need to specify the types of the arguments:
these are usually inferred by Lean from the type signature of the function.

def f : Nat → Nat → Nat → Nat :=
fun a b c => 2 * a + b + c * c

#eval f 1 0 3 -- 11



Higher-order functions

Functions that take a function as argument are usually called higher-order
functions. Here is an example:

def F : (Nat → Nat) → Nat → Nat :=
fun (g : Nat → Nat) (n : Nat) => 2 * (g n)

Note that the term g does not have to be previously defined: the first
argument of the function F can be passed as an anonymous function2.

#eval F (fun (n : Nat) => n + 1) 2 -- 6

Observe that the arrow type Nat → Nat → Nat → Nat is, by definition,
Nat → (Nat → (Nat → Nat)), and that this is different from the arrow
type (Nat → Nat) → Nat → Nat.

2Also called a λ-abstraction.



Inductive types

A type is a quantification domain. Inductive types are types whose
terms are introduced as values of certain special functions, called
constructors.
In Martin-Löf’s type theory (MLTT), on which Lean is based, the type
of natural numbers is an inductive type with two constructors, called
Nat.zero : Nat and Nat.succ : Nat → Nat.

inductive Nat : Type where
| zero : Nat
| succ (n : Nat) : Nat

The constructor Nat.zero takes no arguments, while Nat.succ takes
one (a term of type Nat).
Product types are also inductive types in MLTT, with only one
constructor Prod.mk : X → Y → X × Y, taking two arguments.

inductive Prod (X : Type) (Y : Type) : Type where
| mk (x : X) (y : Y) : Prod X Y



Pattern-matching

To construct a function out of an inductive type, we can use
pattern-matching on the constructors of that inductive type (case analysis).
This is how we declared the factorial function, using slightly different
notation.

def fact : Nat → Nat :=
fun (n : Nat) => match n with
| Nat.zero => 1
| Nat.succ k => (k + 1) * (fact k)

This is also how the function add_u should have been defined (but, with
Lean’s definition of a product, we can by-pass that particular
pattern-matching)3:

def add_u : Nat × Nat → Nat :=
fun (t : Nat × Nat) => match t with
| Prod.mk m n => m + n

3Products in Lean are records, and terms of record type, in Lean, are definitionally
equal to their η-expansion.



Propositions and proofs

In formal mathematics, a proposition is a special kind of type. Namely,
it is a type P in which any two terms can be identified. This means
that, to any two terms (p : P) and (p’ : P), there is associated an
identification p = p’. Intuitively, this means that P has either zero or
one element.
This property is called proof irrelevance and, in Lean, it is built into
the definition of the type Prop, so the equality p = p′ holds by
reflexivity for terms p p’ : P where P : Prop.

theorem proof_irrel (P : Prop) (p : P) (p’ : P) : p = p’ :=
rfl

If (P : Prop) is a proposition, a term (p : P) is called a proof of P.
You can think of the proposition with no terms as False : Prop and
of the proposition with one term as True : Prop. These two types are
usually introduced as inductive types.



Implications

If P and Q are propositions, then the arrow type P → Q is a
proposition4. That proposition is usually denoted by P ⇒ Q.
A term f : P → Q transforms a proof (p : P) into a proof
(f p : Q), so we can think of the term (f : P → Q) as a proof of
the fact that P implies Q.
For example, we can construct a proof of the following implication:

example (n m : Nat) : n ≤ m → n ≤ m + 1 :=
by exact? -- this will start a library search for you

It also follows from this interpretation of propositions (and the fact
that False is an inductive type with no constructors) that, for all
Q : Prop, we have a term of type False → Q. This in turn implies
that, if you want to prove something, you can always prove False
instead (exfalso quod libet).

4This is a consequence of function extensionality (if for all p : P, we have
f1(p) = f2(p) in Q, then f1 = f2 in P → Q) and it holds as soon as Q is a proposition
(without any assumption on the type P).



Conjunctions

If P and Q are propositions, then the product type P × Q is a
proposition5. This proposition is usually denoted by P ∧ Q.
To prove P ∧Q means to introduce a term of type P × Q. For that, it
suffices to supply a proof of P and a proof of Q, and to use the
constructor Prod.mk.

example (P Q : Prop) (p : P) (q : Q) : P × Q :=
Prod.mk p q

To prove an implication P ∧ Q ⇒ R means to construct a function
fu : P × Q → R . By what we have seen about curried notation, this is
equivalent to constructing a function f : P → Q → R.

5This is again an extensionality result: two terms (t t’ : P × Q) are equal, as
terms of type P × Q, if and only if their components are equal, meaning that
t.1 = t’.1 in P and t.2 = t’.2 in Q.



Natural deduction

The modus ponens rule of natural deduction is given as follows:(
(P ⇒ Q) ∧ P

)
⇒ Q

This proposition corresponds to the type ((P → Q) × P) → Q, or
equivalently (P → Q) → P → Q, where P and Q are propositions.
The key observation is that this rule is provable in our typing system,
since it corresponds to the evaluation of a function (f : P → Q) on a
term (p : P).

theorem mp (P Q : Prop) : (P → Q) → P → Q :=
fun (f : P → Q) (p : P) => f p

This type-checks because the term f p is indeed of type Q.
The modus ponens rule is then proved because we have constructed a
term mp P Q : (P → Q) → P → Q. We say that the type
(P → Q) → P → Q is inhabited.

https://en.wikipedia.org/wiki/Natural_deduction


A proof that 0 ≤ 1 in N

In Lean, the usual ordering of the natural numbers is the relation Nat.le
defined inductively as follows (Nat.le n m means n ≤ m in Nat).

inductive Nat.le : Nat → Nat → Prop where
| refl (n : Nat) : Nat.le n n
| step (n m : Nat) : Nat.le n m → Nat.le n (m + 1)

We can use this to construct a proof of the proposition 0 ≤ 1 via modus
ponens.

f := Nat.le.step 0 0 is a proof of the proposition
(0 ≤ 0) → (0 ≤ 1).
p := Nat.le.refl 0 is a proof of the proposition (0 ≤ 0).
Thus, the term zero_leq_one := f p is a proof of the proposition
(0 ≤ 1).

theorem zero_leq_one : 0 ≤ 1 :=
(Nat.le.step 0 0) (Nat.le.refl 0)



Summary

In a programming language such as Lean, mathematical objects like
the natural numbers and mathematical propositions like the modus
ponens rule are represented as types.
To construct a proof of a proposition P, we must write a program
whose output is a term of type P.
To write such a program, which is always a function of some kind, we
need to learn the syntax of the language.
We suggest to start with the following notions: curried functions,
higher-order functions, inductive types, and pattern-matching on
constructors.



Let’s get started!

Today, you should:
Either work on the following file to practice Lean’s syntax.
Or play the Natural Number Game, to get a first feel about tactics,
which we will study more in detail next week.

And between today and next week, you should give a try to whichever
activity you did not do today! More precisely, before 24.04.2025, you
should:

1 Go through the whole Lean syntax file.
2 Play the Natural Number Game, all the way until Multiplication World

and Implication World.

https://live.lean-lang.org/#url=https%3A%2F%2Fmatematiflo.github.io%2FCompAssistedMath2025%2FPracticeFiles%2FLeanSyntax.lean
https://adam.math.hhu.de/#/g/leanprover-community/nng4
https://live.lean-lang.org/#url=https%3A%2F%2Fmatematiflo.github.io%2FCompAssistedMath2025%2FPracticeFiles%2FLeanSyntax.lean


Further resources:
https://leanprover-community.github.io/

Online Lean Server: https://live.lean-lang.org/
The Hitchhiker’s Guide to Logical Verification 2025.

On Müsli you will find the address of the seminar webpage, where these
slides and all other resources are kept.

You should decide before Friday 25.04 if you want to stay in the seminar
(let us know via Müsli).

https://leanprover-community.github.io/
https://live.lean-lang.org/
https://github.com/lean-forward/logical_verification_2025/blob/main/hitchhikers_guide_2025_desktop.pdf
https://muesli.mathi.uni-heidelberg.de/lecture/view/1971
https://matematiflo.github.io/CompAssistedMath2025/


Zulip invitation link

We also ask you to join the following Zulip channel, through which we will
communicate during the semester (you can use your GitHub account to log
in, no need to create a Zulip account).


