Theorem: Let (K, \mathcal{T}) be a topological space. Let $S \subseteq K$. Then there are at most 14 pairwise distinct sets that can be formed by repeatedly applying the operations "closure" and "complement" to S.

Proof: Let kS denote the closure of S, and cS the complement of S. It suffices to prove the following three identities:

- 1. kkS = kS (the closure operation is idempotent)
- 2. ccS = S (the complement operation is an involution)
- 3. kckckckcS = kckcS (the operation kckc is an involution)

The 14 distinct sets that arise from these operations are:

S	cS
kS	ckS
kcS	ckcS
kckS	ckckS
kckcS	ckckcS
kckckS	ckckckS
kckckcS	ckckckcS

To 1): kS is the intersection of all closed subsets X of K that contain S. Since kS is itself closed, it follows that kkS = kS.

To 2): $x \in S \Leftrightarrow x \notin cS \Leftrightarrow x \in ccS$.

To 3): We first prove the following auxiliary statements:

- i) $A \subseteq B \Rightarrow iA \subseteq iB$ *Proof:* Let $x \in iA$. Then there exists an open set $E \subseteq A$ with $x \in E$. Since $E \subseteq A \subseteq B$, we have $x \in iB$.
- ii) $A \subseteq B \Rightarrow kA \subseteq kB$ *Proof:* Let $x \in kA$, and let M be a closed set with $B \subseteq M$. Then $A \subseteq B \subseteq M \Rightarrow kA \subseteq M \Rightarrow x \in M \Rightarrow x \in kB$.
- iii) iS = ckcSProof:
 - $iS \subseteq ckcS$: Let $x \in iS$. Then there exists an open set $E \subseteq S$ with $x \in E$. Since E is open, cE is closed and $cS \subseteq cE \Rightarrow kcS \subseteq cE \Rightarrow x \notin kcS \Rightarrow x \in ckcS$.
 - $ckcS \subseteq iS$: Let $x \in ckcS$. Since kcS is closed, ckcS is open, and there exists an open set $E \subseteq ckcS$ with $x \in E$ and $E \cap kcS = \emptyset$. Then $E \cap cS = \emptyset \Rightarrow E \subseteq S$, and since E is open, $x \in iS$.

We now show that kikiS = kiS. From (iii) it then follows that kckckckcS = kckcS. *Proof:*

- $kikiS \subseteq kiS$: $ikiS \subseteq kiS \Rightarrow kikiS \subseteq kkiS = kiS$ (i), (ii)
- $kiS \subseteq kikiS: iS \subseteq kiS \Rightarrow iiS \subseteq ikiS \Rightarrow kiS \subseteq kikiS$ (i), (ii)

The maximum of 14 pairwise distinct sets can be realised in \mathbb{R} : Let $K = \mathbb{R}$, $S = (0, 1) \cup (1, 2) \cup \{3\} \cup ([4, 5] \cap \mathbb{Q})$. The 14 sets are the following:

1.
$$S = (0,1) \cup (1,2) \cup \{3\} \cup ([4,5] \cap \mathbb{Q})$$

- 2. $cS = (-\infty, 0] \cup \{1\} \cup [2, 3) \cup (3, 4) \cup ((4, 5) \setminus \mathbb{Q}) \cup (5, \infty)$
- 3. kcS = $(-\infty, 0] \cup \{1\} \cup [2, \infty)$
- 4. ckcS = $(0, 1) \cup (1, 2)$
- 5. kckcS = [0, 2]
- 6. ckckcS = $(-\infty, 0) \cup (2, \infty)$
- 7. kckckcS = $(-\infty, 0] \cup [2, \infty)$
- 8. ckckckcS = (0, 2)
- 9. kS = $[0,2] \cup \{3\} \cup [4,5]$
- 10. ckS = $(-\infty, 0) \cup (2, 3) \cup (3, 4) \cup (5, \infty)$
- 11. kckS = $(-\infty, 0] \cup [2, 4] \cup [5, \infty)$
- 12. ckckS = $(0, 2) \cup (4, 5)$
- 13. kckckS = $[0, 2] \cup [4, 5]$
- 14. ckckckS = $(-\infty, 0) \cup (2, 4) \cup (5, \infty)$