
Coin theorem

Daniel Buth & Sebastian Meier

June 2025

1

1 introduction
N0 denotes the natural numbers starting with zero.

Definition 1.1. A ring (with 1) is a set R with two operations

+ : R×R → R (addition)
· : R×R → R (multiplication)

such that

1. (R,+) is a abelian group

2. (R,·) is a monoid

3. ∀a, b, c ∈ R follows

(a+ b)c = ac+ bc

c(a+ b) = ca+ cb

(distributive law)

Remark. R is commutative if multiplication is commutative.

Remark. Z is commutative.

Definition 1.2. A subset S of a ring R is called a subring if S is with the multiplication a submonoid of (R,·)
and with the addition a subgroup of (R,+). In particular, S is, with the restricted operations itself, a ring. For
each ring R, we have R⋆ = {a ∈ R : ∃b ∈ R, ab = 1} the set of multiplicatively invertible elements. R⋆ is with
the multiplication a group. R⋆ is also called identity group. An element a ∈ R is called zero divisor if it exists
a 0 ̸= b ∈ R such that ab = 0 or ba = 0. A commutative ring R ̸= 0 is called integral domain or nonzero if R
has no zero divisor except 0

Remark. Z is a integral domain and Z⋆ = {−1, 1}.

Definition 1.3. Let R be a ring. A subset a ∈ R is called a ideal, if

1. a is a additive subgroup of R.

2. r ∈ R, a ∈ a ⇒ ra ∈ a

Remark. In each ring it contains the trivial rings namely the zero ideal denoted by (0) and R. For ideals
a, b ⊆ R are the following subsets of R ideals:

a+ b := {a+ b : a ∈ a, b ∈ b}

ab := {
n∑

i∈I

aibi : ai ∈ a, b ∈ b, n ∈ N}

a ∩ b

The sum of any number of ideals is an ideal. For each a ∈ R, we call (a) := Ra = {ra : r ∈ R} the generated
principal ideal of a. For finite elements ai, . . . , an ∈ R is (ai, . . . , an) := Ra1 + · · ·+Ran = {r1a1 + · · ·+ rnan :
r1, . . . , rn ∈ R} an ideal in R. It is called the generated ideal of a1, . . . an and it is the smallest ideal that
contains a1, . . . an. Analogously, any number of ai ∈ R, i ∈ I generates the ideal ({ai : i ∈ I}) :=

∑
i∈I Rai =

{
∑

i∈I riai : ri ∈ R, for almost all ri = 0}.

Definition 1.4. Let a be an ideal of a ring R. A family (ai)i∈I of elements in a is called generator of a if
a =

∑
i∈I Rai. a is called finitely generated if a contains a finite generator. a is called a principal ideal if a

= (a) for an a ∈ R. Is R an integral domain such that each ideal in R is a principal ideal, then R is called a
principal ideal domain.

Remark. Z is a principal ideal domain

Remark. In an integral domain two principal ideals a = (a), b = (b) are the same if and only if ∃c ∈ R⋆, b = ca.

Remark. For a,b ∈ R, we call them associated to another, if ∃c ∈ R⋆, b = ca.

2

Definition 1.5. Let R be a commutative ring and let a, b ∈ R. a is divisible by b if there ∃c ∈ R, a = cb. We
write a|b.

Remark. Let R be a commutative ring and let a, b ∈ R. Then the following statements are equivalent:

1. a|b

2. (b) ⊆ (a)

3. spanR{b} ≤ spanR{a}

Theorem 1.1. Let R be a commutative semiring and let a,b ∈ R. Then a|b ↔ b ∈ (a).

Definition 1.6. A ring is called noetherian, if each ascending chain of ideals a1 ⊆ a2 ⊆ · · · ⊆ R is stationary,
such that there exists n ∈ N,ai = an for all i ≥ n.

Definition 1.7. Let R be an integral domain and x1, x2, . . . , xn ∈ R. d ∈ R is called the greatest common divisor
of x1, x2, . . . , xn or d = gcd(x1, x2, . . . , xn) if (x1, x2, . . . , xn) is a principal ideal such that (d) = (x1, x2, . . . , xn).

Remark. Z-Module Z ∼= Z

Source: https://www.uni-frankfurt.de/115698565/algebra.pdf

3

2 Statements
Our goal in this seminar is to prove in LEAN:

Theorem 2.1 (Coin Theorem). Let s be a set of natural numbers.
If gcd(s) = 1, then all sufficiently large natural numbers are representable as an ‘N‘-linear combination of s.
If gcd(s) ̸= 1, then all sufficiently large multiples of the gcd(s) are representable.

As a consequence, all N-submodules of N are finitely generated (equivalently, all additive submonoids of the
natural numbers are finitely generated).

First, let’s define “setGcd”, a function that will often be used.

noncomputable def setGcd (s : Set N) : N :=
(Submodule.IsPrincipal.generator <| Ideal.span <| ((↑) : N → Z) ’’ s).natAbs

The function gets as a parameter a set of natural numbers and returns a natural number by first get a set of non
negative integers (denoted by s′) by mapping the natural numbers to integers by the canonical homomorphism
on s, then get an Z−ideal (denoted by I) generated by the set of integers s′. Z is a PID (Principal Ideal
Domain) and therefore there exists a gen ∈ Z such that I = (gen). At last, we compute the absolute value of
gen (denoted as setGcd s or |gen|).
Remark(1): The gcd of a set of natural numbers is defined to be the nonnegative generator of the ideal of ‘Z‘
generated by them.
Remark(2): "noncomputable" is a modifier. A function, that is marked as noncomputable, is not compiled and
cannot be executed. A function must be marked as noncomputable if they use the axiom of choice or law of
excluded middle to produce data. In our case, "Submodule.isPrincipal.generator" is marked as "noncompute-
able" by "Classical.choose" and therefore "setGcd" must be "noncomputable".
Remark(3): The function "setGcd" is well-defined.

Next, we will state and prove the following lemmas (informally and formally in LEAN), which will help us
prove the Coin Theorem (see equation (2.1)). The lemmas build on each other such that providing a proof for
(2.9) proves the main statement of the Coin Theorem, and providing proofs for (2.10) and (2.11) proves the
consequences of the Coin Theorem.

4

Lemma 2.2. Let s be a set of N0 and n ∈ N0. If n ∈ s, then setGcd s | n

Proof (informal):
Let n ∈ s.
The idea is to state explicitly the information that is needed to compute setGcd and use them to prove setGcd
s | n. From setGcd, we get

1. the set of integers s’ which is computed by the canonical homomorphism (↑) from N → Z on the set s,

2. I as the ideal generated by the set s’. (or I = (s’)) and

3. gen ∈ Z as the generator of I.

That implies

i) I = (gen) and

ii) setGcd s = |gen|

(a): First, we want to prove that (↑)(n) ∈ I.

Proof.
(↑)(n) ∈ I

2⇐⇒ (↑)(n) ∈ (s′)

I suffices to show that (↑)(n) ∈ s′ because the ideal generated with set s’ contains s’. By the definition of the s’
as the image of (↑) on s, (↑)(n) ∈ s′.

(b): Second, we want to prove gen | (↑)(n) ∈ s′ by using (a)

Proof.

gen |(↑)(n) remark⇐⇒ (↑)(n) ∈ (gen)
i)⇐⇒ (↑)(n) ∈ I

Then
gen |(↑)(n)

Int.ofNat_dvd_right
⇐⇒ |gen||n ii)⇐⇒ setGcd s |n

, where Int.ofNat_dvd_right is a theorem that states if n is a natural number and z an integer then

z|(↑)(n) ⇔ |z||n

Proof (formal):

lemma setGcd_dvd (h : n ∈ s) : setGcd s | n := by {
let I : Ideal Z := by {exact Ideal.span (((↑) : N → Z) ’’ s)}
let gen : Z := by {exact Submodule.IsPrincipal.generator I}
let span_gen_eq_I : Ideal.span {gen} = I := by {exact Ideal.span_singleton_generator I}
let n_in_I : (n : Z) ∈ I := by { apply Ideal.subset_span; rw [@Set.mem_image]; use n}
let gen_dvd_n : gen | (n : Z) := by {rw[← @Ideal.mem_span_singleton]; rw [span_gen_eq_I]; exact

n_in_I}
let gen_natAbs_eq_setGcd : gen.natAbs = setGcd s := by {rw [setGcd];}
rw [← gen_natAbs_eq_setGcd]
rw [← Int.ofNat_dvd_right]
exact gen_dvd_n

}

5

Lemma 2.3. Let s be a set of N0 and n ∈ N0. Then n | setGcd s ↔ ∀m ∈ s, n | m

Proof (informal):
(⇒) Let n | setGcd s and m ∈ s. By definition of dvd, it suffices to show that ∃c ∈ N : m = c · n.
By Lemma 2.2 on m ∈ s, we get setGcd s | m. By definition of dvd on n | setGcd s, we get

1. d ∈ N

2. setGcd s = d · n

By definition of dvd on setGcd s | m, we get

a) e ∈ N

b) m = e · setGcd s

By using c := e · d, then we can write

m
b
= e · setGcd s 2

= e · (d · n) = (e · d) · n = c · n

(⇐) Let ∀m ∈ s, n|m.
The idea is to state explicitly the information that is needed to compute setGcd and use them to prove n |
setGcd s. From setGcd, we get

1. the set of integers s’ which is computed by the canonical homomorphism (↑) from N → Z on the set s,

2. I as the ideal generated by the set s’. (or I = (s’)) and

3. gen ∈ Z as the generator of I.

That implies

i) I = (gen) and

ii) setGcd s = |gen|

To show that n | setGcd s.

n|setGcd s ii⇐⇒ n||gen|
Int.ofNat_dvd_left

⇐⇒ (↑)(n)|gen remark⇐⇒ (gen) ≤ ((↑)(n) 3⇐⇒ I ≤ ((↑)(n)) 2⇐⇒ (s′) ≤ ((↑)(n))
Ideal.span_le

⇐⇒ s′ ⊂ ((↑)(n))

So it suffices to show that s′ ⊂ ((↑)(n). Let m ∈ s′, then we need only to show that m ∈ ((↑)(n).

m ∈ (↑)(n) remark⇐⇒ (↑)(n)|m
Int.natCast_dvd

⇐⇒ n||m|

So it suffices to show that |m| ∈ s because by assumption follows that n||m|.

Proof. m ∈ s′ =⇒ ∃a ∈ s : (↑)(a) = m.

1. a ∈ s

2. (↑)(a) = m

|m| ∈ s
2⇐⇒ |(↑)(a)| ∈ s

|(↑)(a)|=a⇐⇒ a ∈ s

By 1, the proof is done.

6

Proof (formal):

lemma dvd_setGcd_iff : n | setGcd s ↔ ∀ m ∈ s, n | m := by {
constructor
· intro n_dvd_setGcd

intro m_in_Nat
intro m_in_s

have setGcd_dvd_m : setGcd s | m_in_Nat := by {exact setGcd_dvd m_in_s}

rcases n_dvd_setGcd with ⟨d, hd⟩
rcases setGcd_dvd_m with ⟨e, he⟩
dsimp[Dvd.dvd]
use d * e
rw [he, hd, mul_assoc]

· intro all_m_in_s_follows_n_dvd_m
let I : Ideal Z := by {exact Ideal.span (((↑) : N → Z) ’’ s)}
let gen : Z := by {exact Submodule.IsPrincipal.generator I}
let span_gen_eq_I : Ideal.span {gen} = I := by {exact Ideal.span_singleton_generator I}
let gen_natAbs_eq_setGcd : gen.natAbs = setGcd s := by {rw [setGcd]}
rw [← gen_natAbs_eq_setGcd]
rw [← Int.ofNat_dvd_left]
rw [← Ideal.span_singleton_le_span_singleton]
rw [span_gen_eq_I]
let span_s_eq_I : Ideal.span (((↑) : N → Z) ’’ s) = I := by {rw
[←@Submodule.toSubMulAction_inj]}
rw [← span_s_eq_I]
rw [@Ideal.span_le]
rw [@Set.subset_def]
intro m_in_Z
intro m_in_nat_cast_s
rw [@SetLike.mem_coe]
rw [@Ideal.mem_span_singleton]
rw [@Int.natCast_dvd]

let m_in_Z_natAbs_in_s : m_in_Z.natAbs ∈ s := by {
rcases m_in_nat_cast_s with ⟨ m_in_N, m_in_N_in_s_and_coe_m_in_N_eq_m_in_Z⟩
rcases m_in_N_in_s_and_coe_m_in_N_eq_m_in_Z with ⟨m_in_N_in_s, coe_m_in_N_eq_m_in_Z⟩
rw[← coe_m_in_N_eq_m_in_Z]
rw [Int.natAbs_cast]
exact m_in_N_in_s

}

exact all_m_in_s_follows_n_dvd_m m_in_Z.natAbs m_in_Z_natAbs_in_s
}

7

Lemma 2.4. Let s be a set of N0 and n ∈ N0. Then setGcd s = 0 ⇔ s ⊆ {0}

Proof (informal):
The idea is to state explicitly the information that is needed to compute setGcd and use them to prove this
lemma. From setGcd, we get

1. the set of integers s’ which is computed by the canonical homomorphism (↑) from N → Z on the set s,

2. I as the ideal generated by the set s’. (or I = (s’)) and

3. gen ∈ Z as the generator of I.

That implies

i) I = (gen) and

ii) setGcd s = |gen|

(⇒) Let setGcd s = 0.

setGcd s = 0
ii⇐⇒ |gen| = 0

norm⇐⇒ gen = 0 (1)

Then

(s′)
2
= I

i
= (gen)

(1)
= (0) (2)

It suffices to show that ∀x ∈ s : x = 0.

Proof. Let x ∈ s, then (↑)(x) ∈ s′ by 1. By (2), we get that ∀p ∈ s′ : p = 0. Then by combining both, we get
that (↑)(x) = 0 and by Int.ofNat_eq_zero therefore x = 0.

(⇐) Let s ⊆ {0}, then ∀n ∈ s : n = 0. By (1)and (2), it suffices to show that ∀x ∈ s′ : x = 0.

Proof. Let x ∈ s′. Then there exists a p ∈ s : (↑)(p) = x. By assumption on p ∈ s, we get that p = 0 and by
Int.natCast_eq_zero, we get that x = 0.

8

Proof (formal):

lemma setGcd_eq_zero_iff : setGcd s = 0 ↔ s ⊆ {0} := by {

let I : Ideal Z := by {exact Ideal.span (((↑) : N → Z) ’’ s)}
let gen : Z := by {exact Submodule.IsPrincipal.generator I}
let I_eq_span_s : I = Ideal.span (((↑) : N → Z) ’’ s) := by {rfl}
let I_eq_span_gen : I = Ideal.span {gen} := by {rw[Ideal.span_singleton_generator I]}
let gen_natAbs_eq_natGcd_s : gen.natAbs = setGcd s := by {rw [setGcd]}

constructor
· intro setGcd_eq_0

rw [← gen_natAbs_eq_natGcd_s] at setGcd_eq_0
rw [@Int.natAbs_eq_zero] at setGcd_eq_0

have I_eq_bot : I = ⊥ := by {
rw [I_eq_span_gen]
exact Ideal.span_singleton_eq_bot.mpr setGcd_eq_0

}

dsimp[@Set.subset_def]

have for_all_x_in_s_x_eq_0 : ∀ x ∈ s, x = 0 := by {
intro x
intro x_in_s

let for_all_x_in_coe_s : ∀ x ∈ (((↑) : N → Z) ’’ s), x = 0 := by {
rw [I_eq_span_s] at I_eq_bot
exact Ideal.span_eq_bot.mp I_eq_bot

}

let coe_x_in_coe_s : ↑x ∈ (((↑) : N → Z) ’’ s) := by {rw [@Set.mem_image]; exists x}

exact Int.ofNat_eq_zero.mp (for_all_x_in_coe_s (↑x) coe_x_in_coe_s)
}

exact for_all_x_in_s_x_eq_0

· intro s_in_zero_set
dsimp [@Set.subset_def] at s_in_zero_set

rw [← gen_natAbs_eq_natGcd_s]
rw [@Int.natAbs_eq_zero]
rw [← Ideal.span_singleton_eq_bot]

rw [← I_eq_span_gen]
rw [I_eq_span_s]
rw [Ideal.span_eq_bot]

intro x
intro x_in_nat_cast_s

rw [@Set.mem_image] at x_in_nat_cast_s
rcases x_in_nat_cast_s with ⟨ h , h_in_s, coe_h_eq_x⟩

rw [← coe_h_eq_x]
rw [s_in_zero_set h h_in_s]
rw [@Int.natCast_eq_zero]

}

9

Lemma 2.5. Let s be a set of N0 and n ∈ N0. If setGcd s ̸= 0, then ∃ n ∈ s, n ̸= 0

Proof (informal):
Let setGcd s ̸= 0. Assume that ¬(∃n ∈ s, n ̸= 0) holds.

¬(∃n ∈ s, n ̸= 0) =⇒ ∀n ∈ s, n = 0 =⇒ s ⊂ {0} Lemma2.4
=⇒ setGcd s = 0

This is a contradiction.
Proof (formal):

lemma exists_ne_zero_of_setGcd_eq_one (hs : setGcd s ̸= 0) : ∃ n ∈ s, n ̸= 0 := by {
by_contra h

have forall_n_in_s_n_eq_0 : ∀n ∈ s, n = 0 := by {
intro n n_in_s
by_contra not_n_eq_zero
apply h
rw [←@Ne.eq_def] at not_n_eq_zero
use n

}

have s_subset_of_zero : s ⊆ {0} := by {
dsimp[@Set.subset_def]
intro x x_in_s
apply @Set.mem_singleton_iff.2
exact forall_n_in_s_n_eq_0 x x_in_s

}

have setGcd_s_eq_zero : setGcd s = 0 := by{
exact setGcd_eq_zero_iff.2 s_subset_of_zero

}

contradiction
}

Proof (formal vers. 2):

lemma exists_ne_zero_of_setGcd_eq_one (hs : setGcd s ̸= 0) : ∃ n ∈ s, n ̸= 0 := by {
contrapose hs

rw [@Ne.eq_def]
rw [@Mathlib.Tactic.PushNeg.not_ne_eq]

rw [setGcd_eq_zero_iff]
rw [@Set.subset_def]

intro x
intro x_in_s

rw [@Set.mem_singleton_iff]

contrapose hs

rw [Mathlib.Tactic.PushNeg.not_not_eq]
use x

}

10

Lemma 2.6. Let s be a set of N0. Then s ⊆ (setGcd s)

Proof (informal):
Let n ∈ s.
To show: n ∈ (setGcd s).

n ∈ (setGcd s) remark⇐⇒ setGcd s|n

By using Lemma 2.2 with n ∈ s the proof is done.
Proof (formal):

lemma subset_span_setGcd : s ⊆ Ideal.span {setGcd s} := by {
rw[@Set.subset_def]
intro n
intro n_in_s

rw [@SetLike.mem_coe]
rw [@Ideal.mem_span_singleton]

exact setGcd_dvd n_in_s
}

11

Lemma 2.7. Let s be a set of N0. Show that there exists a map a: N0 → Z and t ⊆ N0 a finite set such that
t ⊆ s and

∑
n∈t(a(n) · (↑)(n)) = (↑)(setGcd s)

Proof (informal):
The idea is to state explicitly the information that is needed to compute setGcd and use them to prove this
lemma. From setGcd, we get

1. the set of integers s’ which is computed by the canonical homomorphism (↑) from N → Z on the set s,

2. I as the ideal generated by the set s’. (or I = (s’)) and

3. gen ∈ Z as the generator of I.

That implies

i) I = (gen) and

ii) setGcd s = |gen|

WLOG gen ≥ 0. We want to show that gen ∈ spanZ(s
′).

Proof.
gen ∈ spanZ(s

′)
Ideal.submodule_span_eq

⇐⇒ gen ∈ (s′)
2⇐⇒ gen ∈ I

i⇐⇒ gen ∈ (gen)
That the generator of an ideal is an element of the ideal is clear. So the proof is done.

Using Submodule.mem_span_iff_exists_finset_subset on gen ∈ spanZ(s
′), we get

a) a’ : Z → Z

b) t’ a finite set of integers

c) t’ ⊆ s′

d) supp(a’) ⊆ t’

e)
∑

i∈t a
′(i) ∗ i = gen

Lets define a : N → N

a : N → N, i 7→ a(i) :=

{
a′((↑)(i)) (↑)(i) ∈ t′

0 otherwise

and finite set of N0

t := {|i||i ∈ t′}

By using a and t, we only need to show that t ⊆ s and
∑

n∈t(a(n) · n) = setGcd s.
To show: t ⊆ s.

Proof. Let n ∈ t. By definition of t, we get

4) i ∈ t′

5) n = |i|

Using c on 4, we get that i ∈ s′, and get

6) p ∈ s

7) i = (↑)(p)

n
5
= |i| 7

= |(↑)(p)|
Int.natAbs_cast

= p

Then by 6 and the fact that p = n, we are done.

To show:
∑

n∈t(a(n) · (↑)(n)) = (↑)(setGcd s)

Proof. The following steps are corner stones to prove the statement

iii)
∑

n∈t(a(n) · (↑)(n)) =
∑

x∈t′(a(|x|) · (↑)(|x|))

12

Proof. By Finset.sum_image, it suffices to show that | · | is injective. Let x,y ∈ t′ and |x| = |y|, then we
need to show that x = y. By c on x, y, we get x,y ∈ s′. By 1 on x ∈ s′ and y∈ s′, we get

f) v ∈ s

g) (↑)(v) = x

h) w ∈ s

j) (↑)(w) = y

v
Int.natAbs_cast

= |(↑)(v)| g
= |x| assumption

= |y| j
= |(↑)(w)|

Int.natAbs_cast
= w

Then
x

g
= (↑)(v) v=w

= (↑)(w) j
= y

iv)
∑

x∈t′(a(|x|) · (↑)(|x|)) =
∑

m∈t′(a
′(m) · (↑)(|m|))

Proof. It suffices to show that ∀x ∈ t′, a(|x|) = a′(x). Let x ∈ t′. By c on x ∈ t′, we get x ∈ s′. By 1 on
x ∈ s′, we get

k) t ∈ s

l) (↑)(t) = x

Then
a(|x|) l

= a(|(↑)(t)|)
Int.natAbs_cast

= a(t)
assumption

= a′((↑)(t)) l
= a′(x)

v)
∑

m∈t′(a
′(m) · (↑)(|m|)) =

∑
m∈t′(a

′(m) ·m)

Proof. It suffices to show that for m ∈ t′ : m = (↑)(|m|). By c on m ∈ t′, we get that m ∈ s′ and by 1 on
m ∈ s′, we get

8) x ∈ s

9) (↑)(x) = m

m
9
= (↑)(x)

Int.natAbs_cast
= (↑)(|(↑)(x)|) 9

= (↑)(|m|)

vi)
∑

m∈t′(a
′(m) ·m) = gen

Proof. By e, we are done.

vii) gen = (↑)(setGcd s)

Proof.
(↑)(setGcd s) ii

= (↑)(|gen|)
Int.natAbs_of_nonneg

=
gen≥0

gen

13

Proof (formal) PART 1:

lemma exists_sum_mul_eq_setGcd : ∃ (a : N → Z) (t : Finset N), ↑t ⊆ s ∧ Σ n ∈ t, a n * n = setGcd
s := by {

let I : Ideal Z := by {exact Ideal.span (((↑) : N → Z) ’’ s)}
let I_eq_span_s : I = Ideal.span (((↑) : N → Z) ’’ s) := by {rfl}

let gen : Z := by {exact Submodule.IsPrincipal.generator I}
let neg_gen : Z := -gen
let pos_gen : Z := if 0 ≤ gen then gen else -gen

let I_eq_span_pos_gen : I = Ideal.span {pos_gen} := by {
dsimp[pos_gen]
by_cases h : 0 ≤ gen
· rw [if_pos h]; rw[Ideal.span_singleton_generator I]
· rw [if_neg h];

calc I = Ideal.span {gen} := by {rw[Ideal.span_singleton_generator I]}
_ = Ideal.span {-1 * gen} := by {rw [← Ideal.span_singleton_mul_left_unit]; apply
Int.isUnit_iff.mpr; apply Or.inr; rfl}
_ = Ideal.span {neg_gen} := by {dsimp[neg_gen]; rw [Int.neg_one_mul]}

}

let pos_gen_natAbs_eq_setGcd_s : pos_gen.natAbs = setGcd s := by{
dsimp[pos_gen]
by_cases h : 0 ≤ gen
· rw [if_pos h]; rw [setGcd]
· rw [if_neg h]; rw [Int.natAbs_neg]; rw [setGcd]

}

have zero_leq_pos_gen : 0 ≤ pos_gen := by {
dsimp[pos_gen]
by_cases h : 0 ≤ gen
· rw [if_pos h]; exact h
· rw [if_neg h]; rw [@Int.not_le] at h; rw [← @Int.neg_pos] at h;

rw [@Int.lt_iff_le_and_ne] at h; exact h.1;
}

have pos_gen_in_submodule_span_Z_of_coe_s : pos_gen ∈ Submodule.span Z (((↑) : N → Z) ’’ s) := by
{
rw [@Ideal.submodule_span_eq]
rw [← I_eq_span_s]
rw [I_eq_span_pos_gen]
exact Ideal.mem_span_singleton_self pos_gen

}

14

Proof (formal) PART 2:

apply Submodule.mem_span_iff_exists_finset_subset.mp at pos_gen_in_submodule_span_Z_of_coe_s
rcases pos_gen_in_submodule_span_Z_of_coe_s with ⟨a’, t’, t’_in_natcast_s, supp_a’_in_t’,

sum_of_t’_with_a’_n_mul_n_eq_pos_gen⟩

let a : N → Z := fun n 7→ if ↑n ∈ t’ then a’ ↑n else 0
let t : Finset N := Finset.image (fun z 7→ z.natAbs) (t’)

use a, t
constructor
· intro n n_in_coe_t

rw [@Finset.mem_coe] at n_in_coe_t
rw [@Finset.mem_image] at n_in_coe_t
rcases n_in_coe_t with ⟨p, p_in_t’, p_natabs_eq_n⟩

let p_in_natcast_s : p ∈ Nat.cast ’’ s := t’_in_natcast_s p_in_t’
rw [@Set.mem_image] at p_in_natcast_s
rcases p_in_natcast_s with ⟨c, c_in_s, coe_n_eq_p⟩

let c_eq_n : c = n := by {rw [← p_natabs_eq_n,← coe_n_eq_p, Int.natAbs_cast]}
rw[← c_eq_n]
exact c_in_s

· calc Σ n ∈ t, a n * ↑n = Σ m ∈ t’, a’ m * m.natAbs := by {
have inj : Set.InjOn Int.natAbs t’ := by {

intro x x_in_coe_t’ y y_in_coe_t’
intro x_natAbs_eq_y_natAbs
rcases t’_in_natcast_s x_in_coe_t’ with ⟨v, v_in_s, coe_v_eq_x ⟩
rcases t’_in_natcast_s y_in_coe_t’ with ⟨w, w_in_s, coe_w_eq_y ⟩
rw[← coe_w_eq_y,← coe_v_eq_x] at x_natAbs_eq_y_natAbs
repeat rw[Int.natAbs_cast] at x_natAbs_eq_y_natAbs
rw[← coe_w_eq_y, ←coe_v_eq_x]
exact congrArg Nat.cast x_natAbs_eq_y_natAbs

}
rw [Finset.sum_image inj]
apply Finset.sum_congr rfl
intro z z_in_t’
rw[← @Finset.mem_coe] at z_in_t’
rcases t’_in_natcast_s z_in_t’ with ⟨w, w_in_s, coe_w_eq_y ⟩
rw[← coe_w_eq_y]
rw[Int.natAbs_cast]
dsimp[a]
rw[coe_w_eq_y]
rw[@Finset.mem_coe] at z_in_t’
rw [if_pos z_in_t’]

}
_ = Σ m ∈ t’, a’ m * m := by {

apply Finset.sum_congr rfl
intro x x_in_t’
rcases t’_in_natcast_s x_in_t’ with ⟨w, w_in_s, coe_w_eq_y ⟩
rw [← coe_w_eq_y]
rw[Int.natAbs_cast]

}
_ = pos_gen := by exact sum_of_t’_with_a’_n_mul_n_eq_pos_gen
_ = ↑(setGcd s) := by {

rw[← pos_gen_natAbs_eq_setGcd_s]
rw[Int.natAbs_of_nonneg zero_leq_pos_gen]

}
}

15

Lemma 2.8. Let s be a set of N0. Let ι : Type*, t ⊆ ι a finite set, maps a: ι → Z, b: ι → N, and g ∈ N0. If∑
i∈t a(i) · b(i) = g and ∀i ∈ t : g|b(i), then ∃n ∈ N0 : ∀m ≥ n : g|m ⇒ ∃a′ : ι → N0,m =

∑
i∈t(a

′(i) · b(i))

Proof (informal):
Let

∑
i∈t a(i) · b(i) = g and ∀i ∈ t : g|b(i). We intend to prove it by cases.

Case ∀i ∈ t, b(i) = 0:

Proof. First, we use this case hypotheses to prove g = 0:

g =
∑
i∈t

a(i) · b(i) ∀i∈t,b(i)=0
=

∑
i∈t

a(i) · 0 = 0

Next, we want to choose n ∈ N0 : ∀m ≥ n : g|m. We use n = 0 (otherwise if n ̸= 0, then m ̸= 0 and then

g|m def⇐⇒ ∃c ∈ N : m = g ∗ c g=0⇐⇒ ∃c ∈ N : m = 0 ∗ c = 0

leads to a contradiction of m ̸= 0.).
Let m ∈ N0 such that m ≥ 0 : g|m. The next step is to prove that m = 0.

g|m def⇐⇒ ∃c ∈ N : m = g ∗ c g=0⇐⇒ ∃c ∈ N0 : m = 0 ∗ c = 0

So what is left to prove is ∃a′ : ι → N0,m =
∑

i∈t(a
′(i) · b(i)). we use as a’ the zero mapping, then∑

i∈t

(a′(i) · b(i)) ∀i∈t,b(i)=0
=

a′=0

∑
i∈t

(0 · 0) = 0
m=0
= m

Case ∃i ∈ t, b(i) ̸= 0:
Then we have

1. i ∈ t

2. b(i) ̸= 0

We define n := b(i)/g ·
∑

p∈t(−a(p)).toNat · b(p)) ∈ N and use it on our goal. Let m ∈ N such that m ≥ n : g|m.
By m ≥ n, we get

3. ∃c ∈ N : m = n+ c

We want to show that ∃q, r : 0 ≤ r ∧ r < b(i) ∧ q · b(i) + r = c

Proof. Let q := c/b(i) ∈ N and r := c % b(i) ∈ N. By div_add_mod’ on c and q, we get

4. a / b · b + a % b = a

By using q and r on the goal, it suffices to show that 0 ≤ r ∧ r < b(i) ∧ q · b(i) + r = c. We split up what we
want to prove:
Proof to 0 ≤ r:

Proof.

Every natural number is bigger or equal to 0

Proof to r < b(i):

Proof.

By definition of r, we can write the goal as c % b(i) < b(i). Then we can use Nat.mod_lt on c, such that we
only need to show that b(i) > 0. By 2 the proof is done.

Proof to q · b(i) + r = c:

Proof.

We use rewrite goal with definition of q and r and use 3.

Then, we received

16

5. 0 ≤ r

6. r < b(i)

7. q · b(i) + r = c

Next, we show that

.) g | n:

Proof.
g|n def :n⇐⇒ g|b(i)/g ·

∑
p∈t

(−a(p)).toNat · b(p))

By dvd_mul_of_dvd_right, we only need to show that g|
∑

i∈t(−a(p)).toNat·b(p)). By Finset.dvd_sum,
we need to verify that ∀p ∈ t : g|(−a(p)).toNat ·b(p)) and again by dvd_mul_of_dvd_right, we just need
to show that on g | b(p) but that can we show by the hypothesis on p ∈ t.

.) g | b i:

Proof. We use the hypothesis on 1 and are done.

.) g | r:

Proof. By Nat.dvd_add_iff_right, we only need to provide that

.) g|n+ q · b(i)

Proof. Clear because g | n is true by the proof from above and g | q · b(i) because g | b(i)is true by
the proof from above

.) g|m

Proof. Clear because g|m by definition

Our next subgoal is to show that ↑ r+ ↑ n can be written as
∑

p∈t((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑
(−a(p)).toNat)· ↑ b(p)

Proof. First, we show that g ̸= 0, otherwise we get a contradiction (0 ̸= 0) by 2 with by the hypothesis on 2.

↑ r+ ↑ n
def :n
= ↑ g· ↑ r/ ↑ g+ ↑ n

hypothesis
= (

∑
p∈t

a(p)· ↑ b(p))· ↑ r/ ↑ g+ ↑ n

commutative
=
g|r

↑ r/ ↑ g · (
∑
p∈t

a(p)· ↑ b(p))+ ↑ n

= (
∑
i∈p

↑ r/ ↑ g · a(p)· ↑ b(p))+ ↑ n

def :n
= (

∑
p∈t

↑ r/ ↑ g · a(p)· ↑ b(p)) + b(i)/g ·
∑
p∈t

((−a(p)).toNat · b(p))

= (
∑
p∈t

↑ r/ ↑ g · a(p)· ↑ b(p)) +
∑
p∈t

↑ b(i)/ ↑ g · ((−a(p)).toNat· ↑ b(p))

=
∑
p∈t

↑ r/ ↑ g · a(p)· ↑ b(p)+ ↑ b(i)/ ↑ g · ((−a(p)).toNat· ↑ b(p))

distributivity
=

∑
p∈t

(↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g · (−a(p)).toNat))· ↑ b(p)

assoc
=

∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat))· ↑ b(p)

17

The Next step is to show that ∀p ∈ t, 0 ≤↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g· ↑ ((−a(p)).toNat)

Proof. Let p ∈ t.
Case 0 ≤ a(p): By 0 ≤ a(p), we get

8. a(p) = ↑((a(p)).toNat)

9. (−a(i)).toNat = 0

0 ≤↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g· ↑ ((−a(p)).toNat)
9⇐⇒ 0 ≤↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g· ↑ 0

⇐⇒ 0 ≤↑ r/ ↑ g · a(p)
Int.ofNat_ediv_ofNat

⇐⇒ 0 ≤↑ (r/g) · a(p)

It suffices to that 0 ≤↑ (r/g) · a(p) and by Int.mul_nonneg, we only need to show

1. 0 ≤↑ (r/g)

Proof.
0 ≤↑ (r/g) ⇐⇒ 0 ≤↑ r/ ↑ g

Int.natCast_tdiv_eq_ediv
⇐⇒ (↑ r).tdiv ↑ g

We only need to show that 0 ≤↑ g, ↑ r that is true because g and r are natural numbers.

2. 0 ≤ a(p)

Proof. By case hypothesis, we are done

Case a(p) < 0:
By a(p) < 0, we get

10. 0 ≤ −a(p)

11. −a(p) =↑ ((−a(p).toNat)

0 ≤↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g· ↑ (−a(p)).toNat ⇐⇒ −1· ↑ r/ ↑ g · a(p) ≤↑ b(i)/ ↑ g· ↑ ((−a(p)).toNat)

⇐⇒↑ r/ ↑ g · −a(p) ≤↑ b(i)/ ↑ g· ↑ ((−a(p)).toNat)

11⇐⇒↑ r/ ↑ g · −a(p) ≤↑ b(i)/ ↑ g· ↑ −a(p)

By Int.mul_le_mul_of_nonneg_right, it suffices to show that

.) ↑ r/ ↑ g ≤↑ b(i)/ ↑ g

Proof. By Nat.div_le_div_right, we only need to show that r ≤ bi. By 6, we are done.

.) 0 ≤↑ (−a(p)).toNat

Proof. By 11 and 10, we are done.

Now we define a′ : ι → N and c : ι → N such that

a′(p) =

{
(↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g· ↑ (−a(p)).toNat).toNat+ q p = i

(↑ r/ ↑ g · a(p)+ ↑ b(i)/ ↑ g· ↑ (−a(p)).toNat).toNat+ 0 otherwise

c(p) =

{
q p = i

0 otherwise

18

Next, we use a′ on the goal. We need to show that m =
∑

i∈t(a
′(i) · b(i)).

By using Int.natCast_inj.1 on the goal, we only need to show that ↑ m =↑ (
∑

i∈t(a
′(i) · b(i)))

↑ m
3
=↑ n+ ↑ c

q·b(i)+r=c
= ↑ n+ ↑ q· ↑ b(i)+ ↑ r =↑ r+ ↑ n+ ↑ q· ↑ b(i)

r+n as sum
=

∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat)· ↑ b(p)+ ↑ q· ↑ b(i)

=
∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat))· ↑ b(p)+ ↑ (q · b(i))

=
∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat))· ↑ b(p)+ ↑ (
∑
p∈t

c(p) · b(p))

=
∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat))· ↑ b(p) + (
∑
p∈t

↑ c(p)· ↑ b(p))

=
∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat))· ↑ b(p)+ ↑ c(p)· ↑ b(p)

=
∑
p∈t

((↑ r/ ↑ g) · a(p) + (↑ b(i)/ ↑ g)∗ ↑ (−a(p)).toNat)+ ↑ c(p))· ↑ b(p)

=
∑
p∈t

↑ a′(p)· ↑ b(p)

=↑ (
∑
p∈t

(a′(p) · b(p))

19

Proof (formal):

lemma exists_nat_linearCombination_eq {ι : Type*} {t : Finset ι} {a : ι → Z} {b : ι → N} {g : N}
-- We’ll apply this to ‘t‘ obtained from the previous lemma, so ‘g = setGcd s‘ and ‘b = id‘.
(h : Σ i ∈ t, a i * b i = g) (dvd : ∀ i ∈ t, g | b i) :
∃ n : N, ∀ m ≥ n, g | m → ∃ a’ : ι → N, m = Σ i ∈ t, a’ i * b i := by

by_cases h’ : ∀ i ∈ t, b i = 0
-- Show that ‘g = 0‘
· have g_eq_zero : g = 0 := by {

rw [Mathlib.Tactic.Zify.natCast_eq]
calc
↑g = Σ i ∈ t, a i * ↑(b i) := by rw[← h]
_ = 0 := by {rw[Finset.sum_eq_zero]; intro x x_in_t; rw [h’ x x_in_t]; rw

[cast_zero,mul_zero]}
_ = ↑0 := Nat.cast_zero

}

-- Only ‘n = 0‘ is possible
use 0
intro m m_geq_0 g_dvd_m

-- Show that ‘m = 0‘
have m_eq_zero : m = 0 := by{

dsimp[Dvd.dvd] at g_dvd_m
rcases g_dvd_m with ⟨c,m_eq_g_mul_c ⟩
rw[m_eq_g_mul_c]
rw[g_eq_zero]
rw[zero_mul]

}

-- Use the zero mapping
use (fun n 7→ 0)
rw[m_eq_zero]
rw[Finset.sum_eq_zero]
intro x x_in_t
rw [h’ x x_in_t]
rw[mul_zero]

20

push_neg at h’
-- take some nonzero ‘b i‘, and we can then take ‘n‘ to be ‘(b i / g) * Σ i ∈ t, (-a i).toNat * b

i‘
have ⟨i, hi, ne⟩ := h’

-- Use n
let n := b i / g * Σ i ∈ t, (-a i).toNat * b i
use n

-- Get ‘∀ m ≥ n, g | m‘
intro m m_ge_n g_dvd_m

-- Given ‘m ≥ n‘ divisible by ‘g‘, we can write ‘m = q * b i + r + n‘ with ‘0 ≤ r < b i‘.
have ⟨c, eq⟩ := exists_add_of_le m_ge_n
obtain ⟨q, r, h0r, hrbi, rfl⟩ : ∃ q r, 0 ≤ r ∧ r < b i ∧ q * b i + r = c := by {

have := c.div_add_mod’ (b i)
let q : N := c / b i
let r : N := c % b i
use q
use r
constructor
· exact Nat.zero_le r
· constructor
· dsimp[r]

apply Nat.mod_lt (c)
exact Nat.pos_of_ne_zero ne

· dsimp[r]
dsimp[q]
exact this

}

21

-- Notice that ‘g | n‘ and ‘g | b i‘ so ‘g | r‘.
have g_dvd_n : g | n := by {

have g_dvd_sum : g | Σ i ∈ t, (-a i).toNat * b i := by {
apply Finset.dvd_sum
intro j j_in_t
apply dvd_mul_of_dvd_right
exact dvd j j_in_t

}
dsimp[n]
apply dvd_mul_of_dvd_right
exact g_dvd_sum

}

have g_dvd_b_i : g | b i := by {exact dvd i hi}

have g_dvd_r : g | r := by {
have g_dvd_add : g | n + (q * b i) := by {

have g_dvd_q_mul_b_i : g | q * b i := by {
apply dvd_mul_of_dvd_right
exact g_dvd_b_i

}
rw [← Nat.dvd_add_iff_right g_dvd_n]
exact g_dvd_q_mul_b_i

}
rw [Nat.dvd_add_iff_right g_dvd_add]
rw [add_assoc]
rw [← eq]
exact g_dvd_m

}

22

-- ‘r + n‘ can be written as ‘Σ i ∈ t, ((r / g) * a i + (b i / g) * (-a i).toNat) * b i‘
have r_add_n : r + n = Σ p ∈ t, ((r / g : Z) * a p + (b i / g : Z) * ((-a p).toNat) : Z) * (b p :

Z) := by {
calc

-- First, we rewite ‘↑r‘ as ‘↑g * ↑r/↑g‘
(r : Z) + (n : Z) = (g : Z) * (r : Z) / (g : Z) + (n : Z) := by {

rw [Int.mul_ediv_cancel_left ↑r]
rw [Int.natCast_ne_zero]
intro g_eq_zero
rcases dvd i hi with ⟨x,hx⟩
rw [hx] at ne
rw[g_eq_zero, zero_mul] at ne
contradiction

}
-- Next, unfold the definition of ‘↑g‘ in the first ‘↑g‘ in ‘↑g * ↑r/↑g‘
_ = (Σ i ∈ t, a i * (b i : Z)) * r / g + (n : Z) := by {

nth_rw 1 [← h]
}
-- We want that ‘r / g‘ stands on the left side of the sum
_ = (r / g) * (Σ i ∈ t, a i * ↑(b i)) + (n : Z) := by {

have coe_g_dvd_coe_r : (g : Z) | ↑r := by {
rw [Int.natCast_dvd_natCast]
exact g_dvd_r

}

rw [Int.mul_ediv_assoc]
· rw[mul_comm]
· exact coe_g_dvd_coe_r

}
-- Next, we pull in ‘r / g‘ into the sum
_ = Σ i ∈ t, ((r / g) * a i * b i) + (n : Z) := by {

rw [Finset.mul_sum]
rw[Finset.sum_congr]
· rfl
· intro x x_in_t

rw [mul_assoc]
}
-- Next we unfold the definition of ‘n‘
_ = Σ p ∈ t, ((r / g : Z) * a p * (b p : Z)) + Σ j ∈ t, ((b i / g : Z) * ((-a j).toNat : Z) *
(b j : Z)) := by {

dsimp[n]

rw [cast_sum]
rw [Finset.mul_sum]

nth_rw 2 [Finset.sum_congr]
· rfl
intro x x_in_t
rw [Nat.cast_mul]
rw [Int.ofNat_ediv_ofNat]
rw [mul_assoc]

}
-- We write both sum’s as one
_ = Σ p ∈ t, ((r / g : Z) * a p * (b p : Z) + (b i / g :Z) * ((-a p).toNat : Z) * (b p : Z))

:= by {
rw [Finset.sum_add_distrib]

}
-- Use distributivity to ‘(_ + _) * b p‘
_ = Σ p ∈ t, ((r / g : Z) * a p + (b i / g : Z) * ((-a p).toNat : Z)) * (b p : Z) := by {

rw [Finset.sum_congr]
· rfl
· intro p p_in_s

rw [Int.add_mul]
}

}

23

-- and it suffices to verify that all ‘(r / g) * a i + (b i / g) * (-a i).toNat‘ are nonnegative.
have non_neg : ∀p ∈ t, 0 ≤ (r / g : Z) * a p + (b i / g : Z) * ((-a p).toNat : Z) := by {

intro p p_in_t
by_cases hhh : 0 ≤ a p
-- If ‘0 ≤ a p‘ then ‘a p = ↑(a p).toNat‘ and‘(-a i).toNat = 0‘
· have a_p_eq_a_p_cast_toNat : a p = ↑(a p).toNat := by {

rw [Int.eq_natCast_toNat]
exact hhh

}
nth_rw 1 [a_p_eq_a_p_cast_toNat]

have neg_a_p_eq_zero : ↑(-a p).toNat = 0 := by {
rw [Int.toNat_eq_zero]
rw [Int.neg_nonpos_iff]
exact hhh

}
-- Then it suffices to show that ‘0 ≤ ↑(r / g) * a p‘.
rw [neg_a_p_eq_zero]

rw [Int.add_nonnneg_iff_neg_le’]
rw [Int.natCast_zero]
rw [mul_zero]
rw [Int.neg_nonpos_iff]
rw [Int.ofNat_ediv_ofNat]
rw [← a_p_eq_a_p_cast_toNat]

-- For ‘0 ≤ ↑(r / g) * a p‘, we need to prove that ‘0 ≤ a p‘ and ‘0 ≤ ↑(r / g)‘
apply Int.mul_nonneg
· rw [Int.natCast_div]

rw [← Int.natCast_tdiv_eq_ediv]
-- By providing a proof ‘0 ≤ ↑r‘ and ‘0 ≤ ↑g‘, we can proof ‘0 ≤ ↑(r / g)‘
apply Int.tdiv_nonneg
· exact Nat.cast_nonneg r
· exact Nat.cast_nonneg g

· exact hhh
· rw [not_le] at hhh

rw [Int.add_nonnneg_iff_neg_le’]
rw [Int.neg_mul_eq_mul_neg]

-- ‘¬0 ≤ a p‘ can be written as ‘0 ≤ -a p‘
have zero_leq_neg_a_p : 0 ≤ -a p := by {

rw [Int.neg_nonneg]
rw [Int.le_iff_lt_or_eq]
exact Or.inl hhh

}

-- If ‘0 ≤ -a p‘, then ‘-a p = ↑(-a p).toNat‘
have neg_a_p_eq_neg_a_p_cast_toNat : -a p = ↑(-a p).toNat := by {

rw [Int.eq_natCast_toNat]
exact zero_leq_neg_a_p

}

-- Then it suffices to show that ‘↑(r / g) ≤ ↑(b i / g)‘ and ‘0 ≤ ↑(-a p).toNat‘
nth_rw 1 [neg_a_p_eq_neg_a_p_cast_toNat]
rw [← Int.natCast_div]
rw [← Int.natCast_div]
apply Int.mul_le_mul_of_nonneg_right
· rw [Int.ofNat_le]

have r_leq_b_i : r ≤ b i := by{
rw [Nat.le_iff_lt_or_eq]
exact Or.inl hrbi

}
exact Nat.div_le_div_right r_leq_b_i

· rw [← neg_a_p_eq_neg_a_p_cast_toNat]
exact zero_leq_neg_a_p

}

24

-- Define c which is needed to write ‘q * b i‘ as a linear combination of the ‘b i‘s later.
let c : ι → N := by {

classical
intro p
exact if p = i then q else 0

}

/- The final ‘a’‘ needs to be defined using an ‘if . . . then . . . else . . .‘ expression,
because we need to add ‘q‘ to the coefficient of ‘b i‘ but not the other coefficients.
For this you need to precede the definition with the ‘classical‘ tactic.
-/
-- Define ‘a’‘
let a’ : ι → N := by {

classical
intro p
exact (r / g * a p + ↑(b i) / ↑g * ↑(-a p).toNat).toNat + if p = i then q else 0

}

-- Use a’
use a’
-- Show that m = Σ i ∈ t, a’ i * b i
apply Int.natCast_inj.1

calc (m : Z) = (n : Z) + ((q : Z) * (b i : Z) + (r : Z)) := by {
rw[eq]
rw [Int.natCast_add]
rw [Int.natCast_add]
rw [Int.ofNat_mul_out]

}
_ = ((r: Z) + (n : Z)) + (q : Z) * (b i : Z) := by {

nth_rw 1 [add_assoc]
rw[add_comm]
rw[add_assoc]
rw[add_comm]
rw[add_assoc]

}
_ = Σ p ∈ t, (↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat) * ↑(b p) + q * b i := by {

rw [r_add_n]
}
_ = Σ p ∈ t, (↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat) * ↑(b p) + ↑(q * b i) := by {

rw [Int.natCast_mul]
}
_ = Σ p ∈ t, (↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat) * ↑(b p) + ↑(Σ q ∈ t, c q * b q) :=
by {
-- ‘q * b i‘ is obviously a linear combination of the ‘b i‘s.
have q_mul_b_i_eq_sum : q * b i = Σ q ∈ t, c q * b q := by {

rw [Finset.sum_eq_single_of_mem i]
· dsimp[c]

rw [if_pos]
rfl

· exact hi
· intro p p_in_t p_neq_i

dsimp [c]
rw[if_neg p_neq_i]
rw[zero_mul]

}
rw [q_mul_b_i_eq_sum]

}
_ = Σ p ∈ t, (↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat) * ↑(b p) + Σ q ∈ t, ↑(c q) * ↑(b q) :=
by {
rw [cast_sum]
nth_rw 2 [Finset.sum_congr]
· rfl
· intro x x_in_t

rw [Int.ofNat_mul_out]
}

25

-- Combine the two sums into only one sum
_ = Σ p ∈ t, (((↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat) * ↑(b p)) + ↑(c p) * ↑(b p)):= by {

rw [Finset.sum_add_distrib]
}
-- Use distributivity to ‘(_ + _) * b p‘
_ = Σ p ∈ t, (↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat + ↑(c p)) * ↑(b p) := by {

rw [Finset.sum_congr]
· rfl
· intro p p_in_t

nth_rw 2 [Int.add_mul]
}
-- Use the Definition of ‘a’‘
_ = Σ p ∈ t, ↑(a’ p) * ↑(b p) := by {

rw [Finset.sum_congr]
· rfl
· intro p p_in_t

dsimp[a’]
dsimp[c]

have natCast_toNat_eq_self_in_t : ↑(↑r / ↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat).toNat = ↑r /
↑g * a p + ↑(b i) / ↑g * ↑(-a p).toNat := by{

rw[Int.natCast_toNat_eq_self]
exact non_neg p p_in_t

}

rw[natCast_toNat_eq_self_in_t]
}
_ = ↑(Σ p ∈ t, a’ p * b p) := by {

rw [cast_sum]
rw [Finset.sum_congr]
· rfl
· intro x x_in_t

rw [Int.ofNat_mul_out]
}

26

Lemma 2.9. Let s be a set of N0. Show that there exists t ⊆ N0 finite set and n ∈ N0 such that if ∀m ≥ n :
setGcd | m ⇒ m ∈ Submodule.span N0 t

Proof (informal):
The idea is to combine the previous two lemmas 2.7 and 2.8 to prove this statement.
By lemma 2.7 on set s, we get:

1. a as a function from N0 → Z

2. t as a finite set of natural numbers (with zero)

3. t ⊆ s

4.
∑

n∈t(a(n) · (↑)(n)) = (↑)(setGcd s)

Next, we define the function b : N0 → N0, i 7→ i that is just the identity function (b = id) from N0 to N0.
Next, we want to prove the following two sub goals to use lemma 2.8.
Sub goal

∑
r∈t(a(r) · (↑)(b(r))) = (↑)(setGcd s):

Proof.
(↑)(setGcds)

4
=

∑
n∈t

(a(n) · (↑)(n)) b=id
=

∑
n∈t

(a(n) · (↑)(b(n)))

Sub goal : ∀i ∈ t : setGcd s|b(i):

Proof. By definition of b, it suffices to show ∀i ∈ t : setGcd s|i. Let i ∈ t. By 3, i ∈ s and by using lemma 2.2
on i ∈ s the proof is complete.

By lemma 2.8 on ∀i ∈ t : setGcd s|b(i) and
∑

r∈t(a(r) · (↑)(b(r))) = (↑)(setGcd s), we get:

a) n ∈ N0,

b) ∀m ≥ n : setGcd s|m → ∃ a’ : N0 → N0, m =
∑

i∈t(a
′(i) · b(i))

By choosing t from 2 and n from a, we only need to show that ∀m ≥ n : setGcd | m ⇒ m ∈ Submodule.span
N0 t. Let m ∈ N0,m ≥ n : setGcd s|m. By theorem Submodule.mem_span_finset on t and m, we only need
to show that ∃f : N0 → N0, supp(f) ⊂ t and

∑
a∈t(f(a) · a) = m.

By b) on m ∈ N0,m ≥ n : setGcd s|m, we get

i) ∃ a’ : N0 → N0

ii) m =
∑

i∈t(a
′(i) · b(i))

We define the function f : N0 → N0 with

f(i) =

{
a′(i) i ∈ t

0 otherwise

We choose the function f and by definition of f follows supp(f) ⊂ t then all that is left to show is
∑

a∈t(f(a)·a) =
m.

m
ii)
=

∑
i∈t

(a′(i) · b(i)) b=id
=

a′(i)=f(i),i∈t

∑
a∈t

(f(a) · a)

Remark: The theorem Submodule.mem_span_finset on s as finite set on M and x ∈ M states that

x ∈ spanR(s) ↔ ∃f : M → R, supp(f) ⊂ s and
∑
a∈s

(f(a) · a) = x

27

Proof (formal):

lemma exists_mem_nat_submoduleSpan_of_le :
∃ (t : Finset N) (n : N), ∀ m ≥ n, setGcd s | m → m ∈ Submodule.span N t := by {

rcases exists_sum_mul_eq_setGcd s with ⟨a,t,t_in_s, sum_eq_setGcd_s⟩

let b : N → N := fun n 7→ n

have sum_with_b_eq_setGcd_s : Σ r ∈ t, a r * b r = setGcd s := by {
calc Σ r ∈ t, a r * b r = Σ n ∈ t, a n * ↑n := by {

apply Finset.sum_congr rfl
intro x x_in_t
dsimp[b]

}
_ = ↑(setGcd s) := sum_eq_setGcd_s

}

have forall_i_in_t_g_dvd_b_im : ∀ i ∈ t, setGcd s | b i := by {
intro i i_in_t
rw [← @Finset.mem_coe] at i_in_t
exact setGcd_dvd (t_in_s i_in_t)

}

have h : ∃ n : N, ∀ m ≥ n, setGcd s | m → ∃ a’ : N → N, m = Σ i ∈ t, a’ i * b i := by {
exact exists_nat_linearCombination_eq sum_with_b_eq_setGcd_s forall_i_in_t_g_dvd_b_im

}

rcases h with ⟨n, hn⟩

use t
use n

intro m m_geq_n setGcd_s_dvd_m

rw [@Submodule.mem_span_finset]

rcases hn m m_geq_n setGcd_s_dvd_m with ⟨a’, m_eq_sum⟩

let f : N → N := fun n 7→ if n ∈ ↑t then a’ n else 0

use f

constructor
· rw [@Function.support_subset_iff’]

intro x x_not_in_t
dsimp[f]
rw[if_neg]
exact x_not_in_t

· calc Σ a ∈ t, f a · a = Σ i ∈ t, a’ i * b i := by {
apply Finset.sum_congr rfl
intro x x_in_t
dsimp[b]
dsimp[f]
rw [if_pos]
exact x_in_t

}
_ = m := by {

rw [m_eq_sum]
}

}

28

Lemma 2.10. Let s be a set of N0. Show that s is Noetherian.

Proof (informal):

Proof (formal):

sorry

29

Lemma 2.11. Let s be a set of N0. If s is an AddSubmonoid N0, then s.FG

Proof (informal):

Proof (formal):

sorry

30

	introduction
	Statements

